亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

高中數(shù)學(xué)教案15用12篇(數(shù)學(xué)教案高中模板范文)

時間:2024-06-12 17:27:00 教案

  下面是范文網(wǎng)小編收集的高中數(shù)學(xué)教案15用12篇(數(shù)學(xué)教案高中模板范文),歡迎參閱。

高中數(shù)學(xué)教案15用12篇(數(shù)學(xué)教案高中模板范文)

高中數(shù)學(xué)教案15用1

  教學(xué)目標(biāo):

  1。了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系。

  2。會求一些簡單函數(shù)的反函數(shù)。

  3。在嘗試、探索求反函數(shù)的過程中,深化對概念的認(rèn)識,總結(jié)出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識。

  4。進一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力。

  教學(xué)重點:

  求反函數(shù)的方法。

  教學(xué)難點:

  反函數(shù)的概念。

  教學(xué)過程:

  教學(xué)活動

  設(shè)計意圖一、創(chuàng)設(shè)情境,引入新課

  1。復(fù)習(xí)提問

 ?、俸瘮?shù)的概念

 ?、趛=f(x)中各變量的意義

  2。同學(xué)們在物理課學(xué)過勻速直線運動的位移和時間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數(shù);在t=中,時間t是位移S的函數(shù)。在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù)。什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容。

  3。板書課題

  由實際問題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo)。這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性。

  二、實例分析,組織探究

  1。問題組一:

 ?。ㄓ猛队敖o出函數(shù)與;與()的圖象)

  (1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對稱;與()的圖象也關(guān)于直線y=x對稱。是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算。同樣,與()也互為逆運算。)

 ?。?)由,已知y能否求x?

 ?。?)是否是一個函數(shù)?它與有何關(guān)系?

 ?。?)與有何聯(lián)系?

  2。問題組二:

 ?。?)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

 ?。?)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

 ?。?)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?

  3。滲透反函數(shù)的概念。

 ?。ń處燑c明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)

  從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認(rèn)知特點,有利于培養(yǎng)學(xué)生抽象、概括的能力。

  通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設(shè)計問題,使學(xué)生對反函數(shù)有一個直觀的粗略印象,為進一步抽象反函數(shù)的概念奠定基礎(chǔ)。

  三、師生互動,歸納定義

  1。(根據(jù)上述實例,教師與學(xué)生共同歸納出反函數(shù)的定義)

  函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域為 C。我們根據(jù)這個函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來,得到 x = j (y) 。如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù)。這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù)。記作: ??紤]到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對調(diào)寫成。

  2。引導(dǎo)分析:

  1)反函數(shù)也是函數(shù);

  2)對應(yīng)法則為互逆運算;

  3)定義中的"如果"意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);

  4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

  5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

  6)要理解好符號f;

  7)交換變量x、y的原因。

  3。兩次轉(zhuǎn)換x、y的對應(yīng)關(guān)系

 ?。ㄔ瘮?shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的)

  4。函數(shù)與其反函數(shù)的關(guān)系

  函數(shù)y=f(x)

  函數(shù)

  定義域

  A

  C

  值 域

  C

  A

  四、應(yīng)用解題,總結(jié)步驟

  1。(投影例題)

  【例1】求下列函數(shù)的反函數(shù)

 ?。?)y=3x—1 (2)y=x 1

  【例2】求函數(shù)的反函數(shù)。

  (教師板書例題過程后,由學(xué)生總結(jié)求反函數(shù)步驟。)

  2??偨Y(jié)求函數(shù)反函數(shù)的步驟:

  1° 由y=f(x)反解出x=f(y)。

  2° 把x=f(y)中 x與y互換得。

  3° 寫出反函數(shù)的定義域。

  (簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?

 ?。?)的反函數(shù)是________。

  (3)(x<0)的反函數(shù)是__________。

  在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對性地體會定義的特點,進而對定義有更深刻的認(rèn)識,與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會反函數(shù)。在剖析定義的過程中,讓學(xué)生體會函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對數(shù)學(xué)的符號語言有更好的把握。

  通過動畫演示,表格對照,使學(xué)生對反函數(shù)定義從感性認(rèn)識上升到理性認(rèn)識,從而消化理解。

  通過對具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力。

  題目的設(shè)計遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進。并體現(xiàn)了對定義的反思理解。學(xué)生思考練習(xí),師生共同分析糾正。

  五、鞏固強化,評價反饋

  1。已知函數(shù) y=f(x)存在反函數(shù),求它的`反函數(shù) y =f( x)

  (1)y=—2x 3(xR) (2)y=—(xR,且x)

  ( 3 ) y=(xR,且x)

  2。已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值。

  五、反思小結(jié),再度設(shè)疑

  本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟?;榉春瘮?shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究。

 ?。ㄗ寣W(xué)生談一下本節(jié)課的學(xué)習(xí)體會,教師適時點撥)

  進一步強化反函數(shù)的概念,并能正確求出反函數(shù)。反饋學(xué)生對知識的掌握情況,評價學(xué)生對學(xué)習(xí)目標(biāo)的落實程度。具體實踐中可采取同學(xué)板演、分組競賽等多種形式調(diào)動學(xué)生的積極性。"問題是數(shù)學(xué)的心臟"學(xué)生帶著問題走進課堂又帶著新的問題走出課堂。

  六、作業(yè)

  習(xí)題2。4 第1題,第2題

  進一步鞏固所學(xué)的知識。

  教學(xué)設(shè)計說明

  "問題是數(shù)學(xué)的心臟"。一個概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程。本節(jié)教案通過一個物理學(xué)中的具體實例引入反函數(shù),進而又通過若干函數(shù)的圖象進一步加以誘導(dǎo)剖析,最終形成概念。

  反函數(shù)的概念是教學(xué)中的難點,原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號。由于沒有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念。為此,我們大膽地使用教材,把互為反函數(shù)的兩個函數(shù)的圖象關(guān)系預(yù)先揭示,進而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認(rèn)知規(guī)律,有助于概念的建立與形成。另外,對概念的剖析以及習(xí)題的配備也很精當(dāng),通過不同層次的問題,滿足學(xué)生多層次需要,起到評價反饋的作用。通過對函數(shù)與方程的分析,互逆探索,動畫演示,表格對照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動了學(xué)生的探求欲,在探究與剖析的過程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維。使學(xué)生自然成為學(xué)習(xí)的主人。

高中數(shù)學(xué)教案15用2

  [學(xué)習(xí)目標(biāo)]

 ?。?)會用坐標(biāo)法及距離公式證明Cα+β;

 ?。?)會用替代法、誘導(dǎo)公式、同角三角函數(shù)關(guān)系式,由Cα+β推導(dǎo)Cα—β、Sα±β、Tα±β,切實理解上述公式間的關(guān)系與相互轉(zhuǎn)化;

 ?。?)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。

  [學(xué)習(xí)重點]

  兩角和與差的正弦、余弦、正切公式

  [學(xué)習(xí)難點]

  余弦和角公式的推導(dǎo)

  [知識結(jié)構(gòu)]

  1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的'基礎(chǔ)。其公式的證明是用坐標(biāo)法,利用三角函數(shù)定義及平面內(nèi)兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)

  2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應(yīng)該得出如下結(jié)論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

  3、當(dāng)α、β中有一個是的整數(shù)倍時,應(yīng)首選誘導(dǎo)公式進行變形。注意兩角和與差的三角函數(shù)是誘導(dǎo)公式等的基礎(chǔ),而誘導(dǎo)公式是兩角和與差的三角函數(shù)的特例。

  4、關(guān)于公式的正用、逆用及變用

高中數(shù)學(xué)教案15用3

  一、活動主題的提出

  根據(jù)新課改課程標(biāo)準(zhǔn)及高中數(shù)學(xué)教學(xué)要求,為切實實施素質(zhì)教育,改革教學(xué)方式與方法,變教教材為用教材,有機地開展校本課程,培養(yǎng)學(xué)生的綜合實踐能力和創(chuàng)新能力,培養(yǎng)學(xué)生的探索精神和用數(shù)學(xué)的意識,以教材中的閱讀與思考為素教材,推進高中數(shù)學(xué)研究性學(xué)習(xí)的進程,對該問題進行研究,旨在為深化課堂教學(xué)內(nèi)容,促進性自主研究和學(xué)習(xí),從而探討高中數(shù)學(xué)研究性學(xué)習(xí)的實施辦法。

  二、活動的具體目標(biāo)

  1、知識目標(biāo):通過集合中元素的個數(shù)問題的研究,探求有限集合中元素個數(shù)間的關(guān)系,比較幾個集合中元素個數(shù)的多少的方法。

  2、能力目標(biāo):能多方面、多角度、多層面來探究問題,運用知識來解決問題,培養(yǎng)學(xué)生的發(fā)散思維和創(chuàng)新思維能力。

  3、情感目標(biāo):學(xué)該課題的研究,激發(fā)學(xué)生的學(xué)習(xí)熱情和學(xué)習(xí)興趣,享受探索成功的樂趣,培養(yǎng)科學(xué)態(tài)度與科學(xué)精神。

  三、活動的實施過程、方式

  1、出示活動內(nèi)容與思考的問題(5分鐘)

 ?。?)、學(xué)校小賣部進了兩次貨,第一次進的貨是圓珠筆、鋼筆、橡皮、筆記本、方便面、汽水共6種,第二次進的貨是圓珠筆、鉛筆、火腿腸、方便面共4種,兩次一共進了幾種貨?回答兩次一共進了10(6+4)種,對嗎?應(yīng)如何解答?有哪些方法?因此可以得出什么結(jié)論(集合中元素個數(shù)間的關(guān)系)?

 ?。?)、學(xué)校先舉辦了一次田徑運動會,某班有8名同學(xué)參賽,又舉辦了一次球類運動會,這個班有12名同學(xué)參賽,兩次運動會都參賽的有3人。兩次運動會中,這個班共有多少名同學(xué)參賽?應(yīng)如何解答?由此解出以下結(jié)論(集合中元素個數(shù)間的關(guān)系)?又如:某班共30人,其中15人喜愛籃球運動,10人喜愛乒乓球運動,8人對這兩項運動都不喜愛,則喜愛籃球運動但不喜愛乒乓球運動的人是多少?應(yīng)如何解答?

 ?。?)涉及三個及三個以上,集合的并、交問題,能用類似的結(jié)論嗎?應(yīng)怎樣表達?如:學(xué)校開運動會,設(shè)。若參加一百米的同學(xué)有5人,參加二百米跑的同學(xué)有6人,參加四百米跑的同學(xué)有7人,參加一百、二百同學(xué)有2人,參加一百、四百的同學(xué)有3人,參加二百、四百的同學(xué)有5人,三項都參加的人有1人,求有多少人參賽?

 ?。?)設(shè)計比較集合與集合B=中元素的個數(shù)的'多少的方法。

  2、活動分工及時間安排(25分鐘)

  全班以大組為單位(共四個大組)來研究以上4個問題。第一大組研究(1)問題,第二大組研究(2)個問題,第三大組研究(3)個問題,第四大組研究(4)個問題。要求每組由學(xué)生自行確定一位負(fù)責(zé)人,并由此同學(xué)組織具體活動,明確該同學(xué)是下步活動交流中心發(fā)言人。有余力的組可協(xié)助思考其它組的問題。教師下到各組視察,了解情況,并作必要的指導(dǎo)。

  3、活動交流(15分鐘)

  請每一小組中心發(fā)言人回答各自分配的問題,全班其它同學(xué)補充,教師引導(dǎo)學(xué)生概括,得出結(jié)論:

  列舉法

  問題(1)涉及的集合元素個數(shù)較少而且具體,可用列舉法寫出,很快可解決此問題,并由特殊到一般的思維方式概括得出:

  圖解法

  當(dāng)集合元素個數(shù)較少而不具體時,據(jù)題意畫出集合的韋恩圖,從而解決實際問題如問題(2),并歸納得出:這一結(jié)論。

  數(shù)形結(jié)合法

  利用集合間的關(guān)系,結(jié)合示意圖,據(jù)未知可設(shè)適當(dāng)?shù)奈粗獢?shù),建立方程求解,如問題(2)中的第二個問題。設(shè)喜愛籃球運動但不喜愛乒乓球運動的人數(shù)為x,則兩項都喜愛的有(15-x)人,喜愛乒乓球而不喜愛籃球的有[10-(15-x)]人,據(jù)題意有:x+(15-x)+[10-(15-x)]+8=30,解得x=12。故喜愛籃球運動但不喜愛乒乓球運動的有12人。

  歸納、猜想法

  通過對問題(3)的求解,并結(jié)合問題(1)、(2)的求解,歸納、猜想出:。

  概念派生法

  通過問題(4)的研究求解,大部分學(xué)生較易得出A,因此,由真子集的概念得出集合B的元素的個數(shù)少于集合A的元素的個數(shù)。這個結(jié)論是由概念的內(nèi)涵派生出來的。

  “對應(yīng)”法

  經(jīng)研究討論,同學(xué)中有“集合A的元素個數(shù)等于集合B的元素個數(shù)”的結(jié)論。少數(shù)同學(xué)運用“對應(yīng)”思想:,顯然有此結(jié)論。這是一個多好的想法啊!

  四、活動評價

  充分運用高中數(shù)學(xué)子教材資源“閱讀與思考”,廣泛開展第二課堂活動,能很好地調(diào)動學(xué)生的學(xué)習(xí)興趣,能很好地開發(fā)學(xué)生的創(chuàng)造潛能,有助于學(xué)生探究能力和創(chuàng)新能力的提高。通過本課題的研究,至少有以下成功之處:第一、深化了課堂知識,進一步鞏固和拓展了所學(xué)知識;第二、培養(yǎng)了學(xué)生探究能力,很好地改變了學(xué)生的學(xué)習(xí)方式、方法;第三、增強了學(xué)生運用知識解決問題的意識:該課題以解決問題為背景,通過分工與合作和恰當(dāng)?shù)匾龑?dǎo),學(xué)生用知識的意識明顯增強,運用知識解決問題的能力明顯提高;第四、培養(yǎng)了學(xué)生的思維品質(zhì)。通過問題(4)的研究,我們得出了不一樣的結(jié)論,但都有道理,學(xué)生向引發(fā)爭議,學(xué)生的批判性思維得到較好的發(fā)展。

  五、注意事項

  1、教師課題準(zhǔn)備要充分。要認(rèn)真鉆研材料;查閱相關(guān)資料或研究成果;作好周密的活動計劃。切忌無準(zhǔn)備或準(zhǔn)備不充分就上課。

  2、避免“活動研究課”上課學(xué)科化,要充分地讓學(xué)生自主的活動,不人為地牽制學(xué)生。

  3、積極引導(dǎo)學(xué)生搞好“交流——合作”環(huán)節(jié)的活動,充分聽取學(xué)生的意見,讓學(xué)生自己總結(jié)作法和研究成果,切忌教師包辦,強加于人。

  4、堅持引導(dǎo)學(xué)生寫好活動總結(jié)和體會,歸納研究方法與成果,忌只管上課不管下課,課后不鞏固。

高中數(shù)學(xué)教案15用4

  教學(xué)目標(biāo):

  1。通過生活中優(yōu)化問題的學(xué)習(xí),體會導(dǎo)數(shù)在解決實際問題中的作用,促進

  學(xué)生全面認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值。

  2。通過實際問題的研究,促進學(xué)生分析問題、解決問題以及數(shù)學(xué)建模能力的提高。

  教學(xué)重點:

  如何建立實際問題的目標(biāo)函數(shù)是教學(xué)的重點與難點。

  教學(xué)過程:

  一、問題情境

  問題1把長為60cm的鐵絲圍成矩形,長寬各為多少時面積最大?

  問題2把長為100cm的鐵絲分成兩段,各圍成正方形,怎樣分法,能使兩個正方形面積之各最???

  問題3做一個容積為256L的方底無蓋水箱,它的高為多少時材料最???

  二、新課引入

  導(dǎo)數(shù)在實際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實際生活中的某些最值問題。

  1。幾何方面的應(yīng)用(面積和體積等的最值)。

  2。物理方面的應(yīng)用(功和功率等最值)。

  3。經(jīng)濟學(xué)方面的應(yīng)用(利潤方面最值)。

  三、知識建構(gòu)

  例1在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的邊長是多少時,箱底的容積最大?最大容積是多少?

  說明1解應(yīng)用題一般有四個要點步驟:設(shè)——列——解——答。

  說明2用導(dǎo)數(shù)法求函數(shù)的最值,與求函數(shù)極值方法類似,加一步與幾個極

  值及端點值比較即可。

  例2圓柱形金屬飲料罐的容積一定時,它的高與底與半徑應(yīng)怎樣選取,才

  能使所用的材料最???

  變式當(dāng)圓柱形金屬飲料罐的表面積為定值S時,它的高與底面半徑應(yīng)怎樣選取,才能使所用材料最?。?/p>

  說明1這種在定義域內(nèi)僅有一個極值的函數(shù)稱單峰函數(shù)。

  說明2用導(dǎo)數(shù)法求單峰函數(shù)最值,可以對一般的求法加以簡化,其步驟為:

  S1列:列出函數(shù)關(guān)系式。

  S2求:求函數(shù)的導(dǎo)數(shù)。

  S3述:說明函數(shù)在定義域內(nèi)僅有一個極大(?。┲担瑥亩鴶喽楹瘮?shù)的最大(?。┲担匾獣r作答。

  例3在如圖所示的電路中,已知電源的內(nèi)阻為,電動勢為。外電阻為

  多大時,才能使電功率最大?最大電功率是多少?

  說明求最值要注意驗證等號成立的條件,也就是說取得這樣的值時對應(yīng)的自變量必須有解。

  例4強度分別為a,b的兩個光源A,B,它們間的距離為d,試問:在連接這兩個光源的線段AB上,何處照度最???試就a=8,b=1,d=3時回答上述問題(照度與光的強度成正比,與光源的.距離的平方成反比)。

  例5在經(jīng)濟學(xué)中,生產(chǎn)單位產(chǎn)品的成本稱為成本函數(shù),記為;出售單位產(chǎn)品的收益稱為收益函數(shù),記為;稱為利潤函數(shù),記為。

 ?。?)設(shè),生產(chǎn)多少單位產(chǎn)品時,邊際成本最低?

 ?。?)設(shè),產(chǎn)品的單價,怎樣的定價可使利潤最大?

  四、課堂練習(xí)

  1。將正數(shù)a分成兩部分,使其立方和為最小,這兩部分應(yīng)分成____和___。

  2。在半徑為R的圓內(nèi),作內(nèi)接等腰三角形,當(dāng)?shù)走吷细邽? 時,它的面積最大。

  3。有一邊長分別為8與5的長方形,在各角剪去相同的小正方形,把四邊折起做成一個無蓋小盒,要使紙盒的容積最大,問剪去的小正方形邊長應(yīng)為多少?

  4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時,希望在斷面ABCD的面積為定值S時,使得濕周l=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時的高h(yuǎn)和下底邊長b。

  五、回顧反思

  (1)解有關(guān)函數(shù)最大值、最小值的實際問題,需要分析問題中各個變量之間的關(guān)系,找出適當(dāng)?shù)暮瘮?shù)關(guān)系式,并確定函數(shù)的定義區(qū)間;所得結(jié)果要符合問題的實際意義。

  (2)根據(jù)問題的實際意義來判斷函數(shù)最值時,如果函數(shù)在此區(qū)間上只有一個極值點,那么這個極值就是所求最值,不必再與端點值比較。

 ?。?)相當(dāng)多有關(guān)最值的實際問題用導(dǎo)數(shù)方法解決較簡單。

  六、課外作業(yè)

  課本第38頁第1,2,3,4題。

高中數(shù)學(xué)教案15用5

  教學(xué)目標(biāo):

  1.了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系.

  2.會求一些簡單函數(shù)的反函數(shù).

  3.在嘗試、探索求反函數(shù)的過程中,深化對概念的認(rèn)識,總結(jié)出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認(rèn)識.

  4.進一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力.

  教學(xué)重點:求反函數(shù)的方法.

  教學(xué)難點:反函數(shù)的概念.

  教學(xué)過程

  教學(xué)活動

  設(shè)計意圖一、創(chuàng)設(shè)情境,引入新課

  1.復(fù)習(xí)提問

 ?、俸瘮?shù)的概念

  ②y=f(x)中各變量的意義

  2.同學(xué)們在物理課學(xué)過勻速直線運動的位移和時間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數(shù);在t=中,時間t是位移S的函數(shù).在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù).什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容.

  3.板書課題

  由實際問題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo).這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性.

  二、實例分析,組織探究

  1.問題組一:

  (用投影給出函數(shù)與;與()的圖象)

  (1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對稱;與()的圖象也關(guān)于直線y=x對稱.是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算.同樣,與()也互為逆運算.)

  (2)由,已知y能否求x?

  (3)是否是一個函數(shù)?它與有何關(guān)系?

  (4)與有何聯(lián)系?

  2.問題組二:

  (1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

  (2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

  (3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?

  3.滲透反函數(shù)的概念.

  (教師點明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)

  從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的'認(rèn)知特點,有利于培養(yǎng)學(xué)生抽象、概括的能力.

  通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設(shè)計問題,使學(xué)生對反函數(shù)有一個直觀的粗略印象,為進一步抽象反函數(shù)的概念奠定基礎(chǔ).

  三、師生互動,歸納定義

  1.(根據(jù)上述實例,教師與學(xué)生共同歸納出反函數(shù)的定義)

  函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域為 C.我們根據(jù)這個函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來,得到 x = j (y) .如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù).這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù).記作: .考慮到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對調(diào)寫成.

  2.引導(dǎo)分析:

  1)反函數(shù)也是函數(shù);

  2)對應(yīng)法則為互逆運算;

  3)定義中的"如果"意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);

  4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

  5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

  6)要理解好符號f;

  7)交換變量x、y的原因.

  3.兩次轉(zhuǎn)換x、y的對應(yīng)關(guān)系

  (原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的)

  4.函數(shù)與其反函數(shù)的關(guān)系

  函數(shù)y=f(x)

  函數(shù)

  定義域

  A

  C

  值 域

  C

  A

  四、應(yīng)用解題,總結(jié)步驟

  1.(投影例題)

  【例1】求下列函數(shù)的反函數(shù)

  (1)y=3x-1 (2)y=x 1

  【例2】求函數(shù)的反函數(shù).

  (教師板書例題過程后,由學(xué)生總結(jié)求反函數(shù)步驟.)

  2.總結(jié)求函數(shù)反函數(shù)的步驟:

  1° 由y=f(x)反解出x=f(y).

  2° 把x=f(y)中 x與y互換得.

  3° 寫出反函數(shù)的定義域.

  (簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?

  (2)的反函數(shù)是________.

  (3)(x<0)的反函數(shù)是__________.

  在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對性地體會定義的特點,進而對定義有更深刻的認(rèn)識,與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會反函數(shù).在剖析定義的過程中,讓學(xué)生體會函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對數(shù)學(xué)的符號語言有更好的把握.

  通過動畫演示,表格對照,使學(xué)生對反函數(shù)定義從感性認(rèn)識上升到理性認(rèn)識,從而消化理解.

  通過對具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力.

  題目的設(shè)計遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進.并體現(xiàn)了對定義的反思理解.學(xué)生思考練習(xí),師生共同分析糾正.

  五、鞏固強化,評價反饋

  1.已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)

  (1)y=-2x 3(xR) (2)y=-(xR,且x)

  ( 3 ) y=(xR,且x)

  2.已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值.

  五、反思小結(jié),再度設(shè)疑

  本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟.互為反函數(shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究.

  (讓學(xué)生談一下本節(jié)課的學(xué)習(xí)體會,教師適時點撥)

  進一步強化反函數(shù)的概念,并能正確求出反函數(shù).反饋學(xué)生對知識的掌握情況,評價學(xué)生對學(xué)習(xí)目標(biāo)的落實程度.具體實踐中可采取同學(xué)板演、分組競賽等多種形式調(diào)動學(xué)生的積極性."問題是數(shù)學(xué)的心臟"學(xué)生帶著問題走進課堂又帶著新的問題走出課堂.

  六、作業(yè)

  習(xí)題2.4第1題,第2題

  進一步鞏固所學(xué)的知識.

  教學(xué)設(shè)計說明

  "問題是數(shù)學(xué)的心臟".一個概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程.本節(jié)教案通過一個物理學(xué)中的具體實例引入反函數(shù),進而又通過若干函數(shù)的圖象進一步加以誘導(dǎo)剖析,最終形成概念.

  反函數(shù)的概念是教學(xué)中的難點,原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號.由于沒有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念.為此,我們大膽地使用教材,把互為反函數(shù)的兩個函數(shù)的圖象關(guān)系預(yù)先揭示,進而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認(rèn)知規(guī)律,有助于概念的建立與形成.另外,對概念的剖析以及習(xí)題的配備也很精當(dāng),通過不同層次的問題,滿足學(xué)生多層次需要,起到評價反饋的作用.通過對函數(shù)與方程的分析,互逆探索,動畫演示,表格對照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動了學(xué)生的探求欲,在探究與剖析的過程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維.使學(xué)生自然成為學(xué)習(xí)的主人。

高中數(shù)學(xué)教案15用6

  教學(xué)目標(biāo):

  1.結(jié)合實際問題情景,理解分層抽樣的必要性和重要性;

  2.學(xué)會用分層抽樣的方法從總體中抽取樣本;

  3.并對簡單隨機抽樣、系統(tǒng)抽樣及分層抽樣方法進行比較,揭示其相互關(guān)系.

  教學(xué)重點:

  通過實例理解分層抽樣的方法.

  教學(xué)難點:

  分層抽樣的步驟.

  教學(xué)過程:

  一、問題情境

  1.復(fù)習(xí)簡單隨機抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.

  2.實例:某校高一、高二和高三年級分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

  二、學(xué)生活動

  能否用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣,為什么?

  指出由于不同年級的學(xué)生視力狀況有一定的差異,用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣不能準(zhǔn)確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性.

  由于樣本的容量與總體的個體數(shù)的比為100∶2500=1∶25,

  所以在各年級抽取的個體數(shù)依次是,,,即40,32,28.

  三、建構(gòu)數(shù)學(xué)

  1.分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的.各部分叫“層”.

  說明:①分層抽樣時,由于各部分抽取的個體數(shù)與這一部分個體數(shù)的比等于樣本容量與總體的個體數(shù)的比,每一個個體被抽到的可能性都是相等的;

  ②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應(yīng)用.

  2.三種抽樣方法對照表:

  類別

  共同點

  各自特點

  相互聯(lián)系

  適用范圍

  簡單隨機抽樣

  抽樣過程中每個個體被抽取的概率是相同的

  從總體中逐個抽取

  總體中的個體數(shù)較少

  系統(tǒng)抽樣

  將總體均分成幾個部分,按事先確定的規(guī)則在各部分抽取

  在第一部分抽樣時采用簡單隨機抽樣

  總體中的個體數(shù)較多

  分層抽樣

  將總體分成幾層,分層進行抽取

  各層抽樣時采用簡單隨機抽樣或系統(tǒng)

  總體由差異明顯的幾部分組成

  3.分層抽樣的步驟:

 ?。?)分層:將總體按某種特征分成若干部分.

 ?。?)確定比例:計算各層的個體數(shù)與總體的個體數(shù)的比.

 ?。?)確定各層應(yīng)抽取的樣本容量.

  (4)在每一層進行抽樣(各層分別按簡單隨機抽樣或系統(tǒng)抽樣的方法抽?。C合每層抽樣,組成樣本.

  四、數(shù)學(xué)運用

  1.例題.

  例1(1)分層抽樣中,在每一層進行抽樣可用_________________.

 ?。?)①教育局督學(xué)組到學(xué)校檢查工作,臨時在每個班各抽調(diào)2人參加座談;

 ?、谀嘲嗥谥锌荚囉?5人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進一步改進教和學(xué);

 ?、勰嘲嘣┚蹠?,要產(chǎn)生兩名“幸運者”.

  對這三件事,合適的抽樣方法為()

  A.分層抽樣,分層抽樣,簡單隨機抽樣

  B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣

  C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣

  D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣

  例2某電視臺在因特網(wǎng)上就觀眾對某一節(jié)目的喜愛程度進行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

  很喜愛

  喜愛

  一般

  不喜愛

  2435

  4567

  3926

  1072

  電視臺為進一步了解觀眾的具體想法和意見,打算從中抽取60人進行更為詳細(xì)的調(diào)查,應(yīng)怎樣進行抽樣?

  解:抽取人數(shù)與總的比是60∶12000=1∶200,

  則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

  取近似值得各層人數(shù)分別是12,23,20,5.

  然后在各層用簡單隨機抽樣方法抽?。?/p>

  答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

  數(shù)分別為12,23,20,5.

  說明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對于不能取整數(shù)的情況,取其近似值.

 ?。?)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學(xué)校在校務(wù)公開方面的某意見,擬抽取一個容量為20的樣本.

  分析:(1)總體容量較小,用抽簽法或隨機數(shù)表法都很方便.

 ?。?)總體容量較大,用抽簽法或隨機數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.

  (3)由于學(xué)校各類人員對這一問題的看法可能差異較大,所以應(yīng)采用分層抽樣方法.

  五、要點歸納與方法小結(jié)

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1.分層抽樣的概念與特征;

  2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.

高中數(shù)學(xué)教案15用7

  教學(xué)準(zhǔn)備

  1.教學(xué)目標(biāo)

  1、知識與技能:

  函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依

  賴關(guān)系,同時還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識.

  2、過程與方法:

 ?。?)通過實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;

 ?。?)了解構(gòu)成函數(shù)的要素;

  (3)會求一些簡單函數(shù)的定義域和值域;

 ?。?)能夠正確使用“區(qū)間”的符號表示函數(shù)的定義域;

  3、情感態(tài)度與價值觀,使學(xué)生感受到學(xué)習(xí)函數(shù)的必要性和重要性,激發(fā)學(xué)習(xí)的積極性.

  教學(xué)重點/難點

  重點:理解函數(shù)的模型化思想,用集合與對應(yīng)的語言來刻畫函數(shù);

  難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

  教學(xué)用具

  多媒體

  4.標(biāo)簽

  函數(shù)及其表示

  教學(xué)過程

 ?。ㄒ唬﹦?chuàng)設(shè)情景,揭示課題

  1、復(fù)習(xí)初中所學(xué)函數(shù)的概念,強調(diào)函數(shù)的模型化思想;

  2、閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:

 ?。?)炮彈的'射高與時間的變化關(guān)系問題;

 ?。?)南極臭氧空洞面積與時間的變化關(guān)系問題;

 ?。?)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題.

  3、分析、歸納以上三個實例,它們有什么共同點;

  4、引導(dǎo)學(xué)生應(yīng)用集合與對應(yīng)的語言描述各個實例中兩個變量間的依賴關(guān)系;

  5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個實例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系.

 ?。ǘ┭刑叫轮?/p>

  1、函數(shù)的有關(guān)概念

 ?。?)函數(shù)的概念:

  設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).

  注意:

 ?、佟皔=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;

 ?、诤瘮?shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x.

  (2)構(gòu)成函數(shù)的三要素是什么?

  定義域、對應(yīng)關(guān)系和值域

 ?。?)區(qū)間的概念

 ?、賲^(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

 ?、跓o窮區(qū)間;

 ?、蹍^(qū)間的數(shù)軸表示.

 ?。?)初中學(xué)過哪些函數(shù)?它們的定義域、值域、對應(yīng)法則分別是什么?

  通過三個已知的函數(shù):y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比較描述性定義和集合,與對應(yīng)語言刻畫的定義,談?wù)勼w會.

  師:歸納總結(jié)

 ?。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維。

  1、如何求函數(shù)的定義域

  例1:已知函數(shù)f(x)=+

  (1)求函數(shù)的定義域;

 ?。?)求f(-3),f()的值;

 ?。?)當(dāng)a>0時,求f(a),f(a-1)的值.

  分析:函數(shù)的定義域通常由問題的實際背景確定,如前所述的三個實例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

  例2、設(shè)一個矩形周長為80,其中一邊長為x,求它的面積關(guān)于x的函數(shù)的解析式,并寫出定義域.

  分析:由題意知,另一邊長為x,且邊長x為正數(shù),所以0<x<40.

  所以s==(40-x)x(0<x<40)

  引導(dǎo)學(xué)生小結(jié)幾類函數(shù)的定義域:

 ?。?)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R.

  2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合.

  (3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號內(nèi)的式子大于或等于零的實數(shù)的集合.

  (4)如果f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合.(即求各集合的交集)

  (5)滿足實際問題有意義.

  鞏固練習(xí):課本P19第1

  2、如何判斷兩個函數(shù)是否為同一函數(shù)

  例3、下列函數(shù)中哪個與函數(shù)y=x相等?

  分析:

  1構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))

  2兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。

  解:

  課本P18例2

  (四)歸納小結(jié)

 ?、購木唧w實例引入了函數(shù)的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時引出了區(qū)間的概念.

 ?。ㄎ澹┰O(shè)置問題,留下懸念

  1、課本P24習(xí)題1.2(A組)第1—7題(B組)第1題

  2、舉出生活中函數(shù)的例子(三個以上),并用集合與對應(yīng)的語言來描述函數(shù),同時說出函數(shù)的定義域、值域和對應(yīng)關(guān)系.

  課堂小結(jié)

高中數(shù)學(xué)教案15用8

  教學(xué)目標(biāo):

  1、理解并掌握曲線在某一點處的切線的概念;

  2、理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法;

  3、理解切線概念實際背景,培養(yǎng)學(xué)生解決實際問題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化

  問題的能力及數(shù)形結(jié)合思想。

  教學(xué)重點:

  理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法。

  教學(xué)難點:

  用“無限逼近”、“局部以直代曲”的思想理解某一點處切線的斜率。

  教學(xué)過程:

  一、問題情境

  1、問題情境。

  如何精確地刻畫曲線上某一點處的變化趨勢呢?

  如果將點P附近的曲線放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去有點像是直線。

  如果將點P附近的曲線再放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去幾乎成了直線。事實上,如果繼續(xù)放大,那么曲線在點P附近將逼近一條確定的直線,該直線是經(jīng)過點P的所有直線中最逼近曲線的一條直線。

  因此,在點P附近我們可以用這條直線來代替曲線,也就是說,點P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。

  2、探究活動。

  如圖所示,直線l1,l2為經(jīng)過曲線上一點P的兩條直線,

 ?。?)試判斷哪一條直線在點P附近更加逼近曲線;

 ?。?)在點P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?

 ?。?)在點P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?

  二、建構(gòu)數(shù)學(xué)

  切線定義: 如圖,設(shè)Q為曲線C上不同于P的'一點,直線PQ稱為曲線的割線。 隨著點Q沿曲線C向點P運動,割線PQ在點P附近逼近曲線C,當(dāng)點Q無限逼近點P時,直線PQ最終就成為經(jīng)過點P處最逼近曲線的直線l,這條直線l也稱為曲線在點P處的切線。這種方法叫割線逼近切線。

  思考:如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?

  三、數(shù)學(xué)運用

  例1 試求在點(2,4)處的切線斜率。

  解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),

  則割線PQ的斜率為:

  當(dāng)Q沿曲線逼近點P時,割線PQ逼近點P處的切線,從而割線斜率逼近切線斜率;

  當(dāng)Q點橫坐標(biāo)無限趨近于P點橫坐標(biāo)時,即xQ無限趨近于2時,kPQ無限趨近于常數(shù)4。

  從而曲線f(x)=x2在點(2,4)處的切線斜率為4。

  解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:

  當(dāng)?x無限趨近于0時,kPQ無限趨近于常數(shù)4,從而曲線f(x)=x2,在點(2,4)處的切線斜率為4。

  練習(xí) 試求在x=1處的切線斜率。

  解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:

  當(dāng)?x無限趨近于0時,kPQ無限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。

  小結(jié) 求曲線上一點處的切線斜率的一般步驟:

 ?。?)找到定點P的坐標(biāo),設(shè)出動點Q的坐標(biāo);

  (2)求出割線PQ的斜率;

  (3)當(dāng)時,割線逼近切線,那么割線斜率逼近切線斜率。

  思考 如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?

  解 設(shè)

  所以,當(dāng)無限趨近于0時,無限趨近于點處的切線的斜率。

  變式訓(xùn)練

  1。已知,求曲線在處的切線斜率和切線方程;

  2。已知,求曲線在處的切線斜率和切線方程;

  3。已知,求曲線在處的切線斜率和切線方程。

  課堂練習(xí)

  已知,求曲線在處的切線斜率和切線方程。

  四、回顧小結(jié)

  1、曲線上一點P處的切線是過點P的所有直線中最接近P點附近曲線的直線,則P點處的變化趨勢可以由該點處的切線反映(局部以直代曲)。

  2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點處的切線斜率和方程。

  五、課外作業(yè)

高中數(shù)學(xué)教案15用9

  教學(xué)目標(biāo):

  1。理解并掌握瞬時速度的定義;

  2。會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度;

  3。理解瞬時速度的實際背景,培養(yǎng)學(xué)生解決實際問題的能力。

  教學(xué)重點:

  會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度。

  教學(xué)難點:

  理解瞬時速度和瞬時加速度的定義。

  教學(xué)過程:

  一、問題情境

  1。問題情境。

  平均速度:物體的運動位移與所用時間的比稱為平均速度。

  問題一平均速度反映物體在某一段時間段內(nèi)運動的快慢程度。那么如何刻畫物體在某一時刻運動的快慢程度?

  問題二跳水運動員從10m高跳臺騰空到入水的過程中,不同時刻的速度是不同的。假設(shè)t秒后運動員相對于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時運動員的速度.

  2。探究活動:

  (1)計算運動員在2s到2.1s(t∈)內(nèi)的.平均速度。

  (2)計算運動員在2s到(2+?t)s(t∈)內(nèi)的平均速度。

  (3)如何計算運動員在更短時間內(nèi)的平均速度。

  探究結(jié)論:

  時間區(qū)間

  t

  平均速度

  0.1

  -13.59

  0.01

  -13.149

  0.001

  -13.1049

  0.0001

  -13.10049

  0.00001

  -13.100049

  0.000001

  -13.1000049

  當(dāng)?t?0時,?-13.1,

  該常數(shù)可作為運動員在2s時的瞬時速度。

  即t=2s時,高度對于時間的瞬時變化率。

  二、建構(gòu)數(shù)學(xué)

  1。平均速度。

  設(shè)物體作直線運動所經(jīng)過的路程為,以為起始時刻,物體在?t時間內(nèi)的平均速度為。

  可作為物體在時刻的速度的近似值,?t越小,近似的程度就越好。所以當(dāng)?t?0時,極限就是物體在時刻的瞬時速度。

  三、數(shù)學(xué)運用

  例1物體作自由落體運動,運動方程為,其中位移單位是m,時

  間單位是s,,求:

  (1)物體在時間區(qū)間s上的平均速度;

 ?。?)物體在時間區(qū)間上的平均速度;

 ?。?)物體在t=2s時的瞬時速度。

  分析

  解

 ?。?)將?t=0.1代入上式,得:=2.05g=20.5m/s。

  (2)將?t=0.01代入上式,得:=2.005g=20.05m/s。

 ?。?)當(dāng)?t?0,2+?t?2,從而平均速度的極限為:

  例2設(shè)一輛轎車在公路上作直線運動,假設(shè)時的速度為,

  求當(dāng)時轎車的瞬時加速度。

  解

  ∴當(dāng)?t無限趨于0時,無限趨于,即=。

  練習(xí)

  課本P12—1,2。

  四、回顧小結(jié)

  問題1本節(jié)課你學(xué)到了什么?

  1理解瞬時速度和瞬時加速度的定義;

  2實際應(yīng)用問題中瞬時速度和瞬時加速度的求解;

  問題2解決瞬時速度和瞬時加速度問題需要注意什么?

  注意當(dāng)?t?0時,瞬時速度和瞬時加速度的極限值。

  問題3本節(jié)課體現(xiàn)了哪些數(shù)學(xué)思想方法?

  2極限的思想方法。

  3特殊到一般、從具體到抽象的推理方法。

  五、課外作業(yè)

高中數(shù)學(xué)教案15用10

  一、單元教學(xué)內(nèi)容

  (1)算法的基本概念

  (2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)

  (3)算法的基本語句:輸入、輸出、賦值、條件、循環(huán)語句

  二、單元教學(xué)內(nèi)容分析

  算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會發(fā)展中發(fā)揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國古代數(shù)學(xué)中蘊涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對具體數(shù)學(xué)實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學(xué)習(xí)設(shè)計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達的能力,提高邏輯思維能力

  三、單元教學(xué)課時安排:

  1、算法的基本概念3課時

  2、程序框圖與算法的基本結(jié)構(gòu)5課時

  3、算法的基本語句2課時

  四、單元教學(xué)目標(biāo)分析

  1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

  2、通過模仿、操作、探索,經(jīng)歷通過設(shè)計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。

  3、經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環(huán)語句,進一步體會算法的基本思想。

  4、通過閱讀中國古代數(shù)學(xué)中的'算法案例,體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻。

  五、單元教學(xué)重點與難點分析

  1、重點

  (1)理解算法的含義(2)掌握算法的基本結(jié)構(gòu)(3)會用算法語句解決簡單的實際問題

  2、難點

  (1)程序框圖(2)變量與賦值(3)循環(huán)結(jié)構(gòu)(4)算法設(shè)計

  六、單元總體教學(xué)方法

  本章教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強,只能通過對實例的認(rèn)真領(lǐng)會及一定的練習(xí)才能掌握本節(jié)知識。

  七、單元展開方式與特點

  1、展開方式

  自然語言→程序框圖→算法語句

  2、特點

  (1)螺旋上升分層遞進(2)整合滲透前呼后應(yīng)(3)三線合一橫向貫通(4)彈性處理多樣選擇

  八、單元教學(xué)過程分析

  1.算法基本概念教學(xué)過程分析

  對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。

  2.算法的流程圖教學(xué)過程分析

  對生活中的實際問題通過模仿、操作、探索,經(jīng)歷通過設(shè)計流程圖表達解決問題的過程,了解算法和程序語言的區(qū)別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會用流程圖表示算法。

  3.基本算法語句教學(xué)過程分析

  經(jīng)歷將具體生活中問題的流程圖轉(zhuǎn)化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環(huán)語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,

  4.通過閱讀中國古代數(shù)學(xué)中的算法案例,體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻。

  九、單元評價設(shè)想

  1.重視對學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評價

  關(guān)注學(xué)生在數(shù)學(xué)語言的學(xué)習(xí)過程中,是否對用集合語言描述數(shù)學(xué)和現(xiàn)實生活中的問題充滿興趣;在學(xué)習(xí)過程中,能否體會集合語言準(zhǔn)確、簡潔的特征;是否能積極、主動地發(fā)展自己運用數(shù)學(xué)語言進行交流的能力。

  2.正確評價學(xué)生的數(shù)學(xué)基礎(chǔ)知識和基本技能

  關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識,主要包括算法的基本結(jié)構(gòu)、基本語句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進一步學(xué)習(xí)算法

高中數(shù)學(xué)教案15用11

  教學(xué)目標(biāo):

  1.了解復(fù)數(shù)的幾何意義,會用復(fù)平面內(nèi)的點和向量來表示復(fù)數(shù);了解復(fù)數(shù)代數(shù)形式的加、減運算的幾何意義.

  2.通過建立復(fù)平面上的點與復(fù)數(shù)的一一對應(yīng)關(guān)系,自主探索復(fù)數(shù)加減法的幾何意義.

  教學(xué)重點:

  復(fù)數(shù)的幾何意義,復(fù)數(shù)加減法的幾何意義.

  教學(xué)難點:

  復(fù)數(shù)加減法的幾何意義.

  教學(xué)過程:

  一 、問題情境

  我們知道,實數(shù)與數(shù)軸上的點是一一對應(yīng)的,實數(shù)可以用數(shù)軸上的點來表示.那么,復(fù)數(shù)是否也能用點來表示呢?

  二、學(xué)生活動

  問題1 任何一個復(fù)數(shù)a+bi都可以由一個有序?qū)崝?shù)對(a,b)惟一確定,而有序?qū)崝?shù)對(a,b)與平面直角坐標(biāo)系中的點是一一對應(yīng)的,那么我們怎樣用平面上的點來表示復(fù)數(shù)呢?

  問題2 平面直角坐標(biāo)系中的點A與以原點O為起點,A為終點的向量是一一對應(yīng)的,那么復(fù)數(shù)能用平面向量表示嗎?

  問題3 任何一個實數(shù)都有絕對值,它表示數(shù)軸上與這個實數(shù)對應(yīng)的點到原點的距離.任何一個向量都有模,它表示向量的長度,那么相應(yīng)的,我們可以給出復(fù)數(shù)的模(絕對值)的概念嗎?它又有什么幾何意義呢?

  問題4 復(fù)數(shù)可以用復(fù)平面的向量來表示,那么,復(fù)數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復(fù)數(shù)差的模有什么幾何意義?

  三、建構(gòu)數(shù)學(xué)

  1.復(fù)數(shù)的幾何意義:在平面直角坐標(biāo)系中,以復(fù)數(shù)a+bi的實部a為橫坐標(biāo),虛部b為縱坐標(biāo)就確定了點Z(a,b),我們可以用點Z(a,b)來表示復(fù)數(shù)a+bi,這就是復(fù)數(shù)的幾何意義.

  2.復(fù)平面:建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù).

  3.因為復(fù)平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應(yīng),所以我們也可以用向量來表示復(fù)數(shù)z=a+bi,這也是復(fù)數(shù)的幾何意義.

  6.復(fù)數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復(fù)數(shù)差的模就是復(fù)平面內(nèi)與這兩個復(fù)數(shù)對應(yīng)的兩點間的距離.同時,復(fù)數(shù)加減法的法則與平面向量加減法的'坐標(biāo)形式也是完全一致的.

  四、數(shù)學(xué)應(yīng)用

  例1 在復(fù)平面內(nèi),分別用點和向量表示下列復(fù)數(shù)4,2+i,-i,-1+3i,3-2i.

  練習(xí) 課本P123練習(xí)第3,4題(口答).

  思考

  1.復(fù)平面內(nèi),表示一對共軛虛數(shù)的兩個點具有怎樣的位置關(guān)系?

  2.如果復(fù)平面內(nèi)表示兩個虛數(shù)的點關(guān)于原點對稱,那么它們的實部和虛部分別滿足什么關(guān)系?

  3.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)是純虛數(shù)”的__________條件.

  4.“a=0”是“復(fù)數(shù)a+bi(a,b∈R)所對應(yīng)的點在虛軸上”的_____條件.

  例2 已知復(fù)數(shù)z=(m2+m-6)+(m2+m-2)i在復(fù)平面內(nèi)所對應(yīng)的點位于第二象限,求實數(shù)m允許的取值范圍.

  例3 已知復(fù)數(shù)z1=3+4i,z2=-1+5i,試比較它們模的大?。?/p>

  思考 任意兩個復(fù)數(shù)都可以比較大小嗎?

  例4 設(shè)z∈C,滿足下列條件的點Z的集合是什么圖形?

  (1)│z│=2;(2)2<│z│<3.

  變式:課本P124習(xí)題3.3第6題.

  五、要點歸納與方法小結(jié)

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1.復(fù)數(shù)的幾何意義.

  2.復(fù)數(shù)加減法的幾何意義.

  3.?dāng)?shù)形結(jié)合的思想方法.

高中數(shù)學(xué)教案15用12

  教學(xué)目標(biāo):

  (1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題。

 ?。?)進一步理解曲線的方程和方程的曲線。

 ?。?)初步掌握求曲線方程的方法。

 ?。?)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力。

  教學(xué)重點、難點:

  求曲線的方程。

  教學(xué)用具:

  計算機。

  教學(xué)方法:

  啟發(fā)引導(dǎo)法,討論法。

  教學(xué)過程:

  【引入】

  1、提問:什么是曲線的方程和方程的曲線。

  學(xué)生思考并回答。教師強調(diào)。

  2、坐標(biāo)法和解析幾何的意義、基本問題。

  對于一個幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何。解析幾何的兩大基本問題就是:

 ?。?)根據(jù)已知條件,求出表示平面曲線的方程。

  (2)通過方程,研究平面曲線的性質(zhì)。

  事實上,在前邊所學(xué)的直線方程的理論中也有這樣兩個基本問題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節(jié)課就初步研究曲線方程的求法。

  【問題】

  如何根據(jù)已知條件,求出曲線的方程。

  【實例分析】

  例1:設(shè)、兩點的坐標(biāo)是、(3,7),求線段的垂直平分線的方程。

  首先由學(xué)生分析:根據(jù)直線方程的知識,運用點斜式即可解決。

  解法一:易求線段的中點坐標(biāo)為(1,3),

  由斜率關(guān)系可求得l的斜率為

  于是有

  即l的方程為

 ?、?/p>

  分析、引導(dǎo):上述問題是我們早就學(xué)過的,用點斜式就可解決??墒?,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?

 ?。ㄍㄟ^教師引導(dǎo),是學(xué)生意識到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條)。

  證明:(1)曲線上的點的坐標(biāo)都是這個方程的解。

  設(shè)是線段的垂直平分線上任意一點,則

  即

  將上式兩邊平方,整理得

  這說明點的坐標(biāo)是方程的解。

 ?。?)以這個方程的解為坐標(biāo)的點都是曲線上的點。

  設(shè)點的坐標(biāo)是方程①的任意一解,則

  到、的距離分別為

  所以,即點在直線上。

  綜合(1)、(2),①是所求直線的方程。

  至此,證明完畢?;仡櫳鲜鰞?nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標(biāo)都是這個方程的解中,設(shè)是線段的垂直平分線上任意一點,最后得到式子,如果去掉腳標(biāo),這不就是所求方程嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

  解法二:設(shè)是線段的垂直平分線上任意一點,也就是點屬于集合

  由兩點間的距離公式,點所適合的條件可表示為

  將上式兩邊平方,整理得

  果然成功,當(dāng)然也不要忘了證明,即驗證兩條是否都滿足。顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。

  這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應(yīng)的思想。因此是個好方法。

  讓我們用這個方法試解如下問題:

  例2:點與兩條互相垂直的直線的距離的積是常數(shù)求點的軌跡方程。

  分析:這是一個純粹的幾何問題,連坐標(biāo)系都沒有。所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的`直線作坐標(biāo)軸,建立直角坐標(biāo)系。然后仿照例1中的解法進行求解。

  求解過程略。

  【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):

  分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

  首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點;然后寫出表示曲線的點集;再代入坐標(biāo);最后整理出方程,并證明或修正。說得更準(zhǔn)確一點就是:

 ?。?)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對例如表示曲線上任意一點的坐標(biāo);

 ?。?)寫出適合條件的點的集合

  ;

 ?。?)用坐標(biāo)表示條件,列出方程;

 ?。?)化方程為最簡形式;

 ?。?)證明以化簡后的方程的解為坐標(biāo)的點都是曲線上的點。

  一般情況下,求解過程已表明曲線上的點的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標(biāo)的點都是曲線上的點。所以,通常情況下證明可省略,不過特殊情況要說明。

  上述五個步驟可簡記為:建系設(shè)點;寫出集合;列方程;化簡;修正。

  下面再看一個問題:

  例3:已知一條曲線在軸的上方,它上面的每一點到點的距離減去它到軸的距離的差都是2,求這條曲線的方程。

  【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系。

  解:設(shè)點是曲線上任意一點,軸,垂足是(如圖2),那么點屬于集合

  由距離公式,點適合的條件可表示為

 ?、?/p>

  將①式移項后再兩邊平方,得

  化簡得

  由題意,曲線在軸的上方,所以,雖然原點的坐標(biāo)(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為,它是關(guān)于軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示。

  【練習(xí)鞏固】

  題目:在正三角形內(nèi)有一動點,已知到三個頂點的距離分別為、、,且有,求點軌跡方程。

  分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個坐標(biāo)軸,這條邊的垂直平分線為另一個軸,建立直角坐標(biāo)系比較簡單,如圖3所示。設(shè)、的坐標(biāo)為、,則的坐標(biāo)為,的坐標(biāo)為。

  根據(jù)條件,代入坐標(biāo)可得

  化簡得

  ①

  由于題目中要求點在三角形內(nèi),所以,在結(jié)合①式可進一步求出、的范圍,最后曲線方程可表示為

  【小結(jié)】師生共同總結(jié):

 ?。?)解析幾何研究研究問題的方法是什么?

 ?。?)如何求曲線的方程?

  (3)請對求解曲線方程的五個步驟進行評價。各步驟的作用,哪步重要,哪步應(yīng)注意什么?

  【作業(yè)】課本第72頁練習(xí)1,2,3;

高中數(shù)學(xué)教案15用12篇(數(shù)學(xué)教案高中模板范文)相關(guān)文章:

高中軍訓(xùn)感悟12篇

高中老師實習(xí)心得體會12篇(高中教師心得)

高中生課前演講稿11篇 演講稿高中生課前600字

高中生校園活動策劃書3篇(高中校園活動策劃案)

高中畢業(yè)自我鑒定范例12篇 高中畢業(yè)生自我鑒定范文

精品高中周記模板7篇(實習(xí)周記模板)

高中感謝信范文3篇 感謝信高中生

高中美術(shù)教學(xué)工作總結(jié)12篇 高中美術(shù)課程教學(xué)教案

高中軍訓(xùn)心得范文12篇 高中軍訓(xùn)心得體會800字范文

高中生休學(xué)申請書范文3篇 高中學(xué)生休學(xué)申請書


亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

                        在线观看91精品国产入口| 亚洲色图第一区| 欧美激情在线免费观看| 在线看国产日韩| 亚洲午夜成aⅴ人片| 久久亚洲一区二区三区四区| 性做久久久久久免费观看欧美| 91精品福利视频| 久久久精品人体av艺术| 日韩欧美在线综合网| 91丝袜美女网| 日韩电影在线看| 91老师片黄在线观看| 亚洲精品视频在线观看网站| 综合久久综合久久| 亚洲大片免费看| 国产亚洲成aⅴ人片在线观看| 国产999精品久久久久久| 成人精品高清在线| 亚洲线精品一区二区三区八戒| 国产精品综合一区二区| 97精品国产露脸对白| 亚洲高清在线视频| 另类调教123区| 亚洲图片欧美色图| 日本久久一区二区| hitomi一区二区三区精品| 精品美女一区二区| 91麻豆国产自产在线观看| www激情久久| 99久久亚洲一区二区三区青草| 日韩高清在线观看| 99国产精品久久久久久久久久久| 欧美日韩精品三区| 97se亚洲国产综合自在线观| 国产精品亚洲专一区二区三区| 亚洲欧美日韩国产成人精品影院| 蜜臀国产一区二区三区在线播放| 久久精品夜夜夜夜久久| 在线亚洲人成电影网站色www| 看片的网站亚洲| 青青青伊人色综合久久| 97aⅴ精品视频一二三区| 国产精品日产欧美久久久久| 日韩亚洲欧美高清| 久久精品综合网| 国产成人亚洲精品狼色在线| 韩国三级电影一区二区| 亚洲二区在线视频| 国产专区综合网| 国内不卡的二区三区中文字幕| 欧美精品色综合| 亚洲午夜精品久久久久久久久| 久久精品人人爽人人爽| 欧美一区二区三区视频免费| 日韩午夜av一区| 久久综合网色—综合色88| 国产99久久久久久免费看农村| 成人午夜私人影院| 国内久久婷婷综合| 日韩一区欧美一区| 亚洲不卡一区二区三区| 亚洲日本va午夜在线影院| 水野朝阳av一区二区三区| 亚洲gay无套男同| 成人午夜在线播放| 91精品国产色综合久久不卡蜜臀| 国产精品一区二区91| 精品国产伦一区二区三区免费| 色综合久久88色综合天天| 91精品国产品国语在线不卡| 欧美日产在线观看| 国产精品88av| 久久久久9999亚洲精品| 欧美日本乱大交xxxxx| 日本一区二区三区在线不卡| 亚洲欧美日韩综合aⅴ视频| 日精品一区二区三区| 欧美电影免费观看完整版| 免费在线观看精品| 精品国产成人系列| 亚洲成人激情av| 亚洲国产精品尤物yw在线观看| 国产剧情一区二区| 91麻豆精品国产| 经典三级在线一区| 日韩视频国产视频| 国产精品视频一二三| 26uuu国产在线精品一区二区| 国产精品视频免费看| 久久精品亚洲一区二区三区浴池| 自拍视频在线观看一区二区| 中文字幕不卡在线观看| 亚洲二区在线视频| 91久久精品日日躁夜夜躁欧美| 一区二区欧美在线观看| 国产高清精品久久久久| 国产盗摄视频一区二区三区| 欧美tickling网站挠脚心| 欧美人妇做爰xxxⅹ性高电影| 日本不卡高清视频| 久久欧美中文字幕| 欧美成人猛片aaaaaaa| 精品国产一区二区国模嫣然| 日韩国产高清在线| 五月婷婷激情综合| 国内精品久久久久影院色| 26uuu亚洲| 蜜芽一区二区三区| 久久毛片高清国产| 久久综合色天天久久综合图片| 91精品国产免费久久综合| 亚洲欧美成人一区二区三区| 亚洲欧洲在线观看av| 亚洲一二三四久久| 男人的天堂亚洲一区| 国产一级精品在线| 中文字幕精品一区二区精品绿巨人| 日韩欧美自拍偷拍| 国产精品资源在线观看| 国产欧美一区二区三区网站| 久久综合色鬼综合色| 日韩免费性生活视频播放| 欧美一区二区视频观看视频| 五月综合激情网| 秋霞午夜av一区二区三区| 日韩影院免费视频| 成人av中文字幕| 色综合久久88色综合天天6| 欧美一级一级性生活免费录像| 色婷婷av一区二区三区gif| 亚洲不卡av一区二区三区| 国产一区二区精品久久99| 91精品国产综合久久久久久漫画| 国产精品一二三四区| 国产91精品久久久久久久网曝门| 911国产精品| 91丝袜美女网| 久久综合九色综合97婷婷女人| 亚洲精品视频免费观看| 99久久久免费精品国产一区二区| 91丝袜美腿高跟国产极品老师| 在线免费观看日韩欧美| 亚洲免费观看高清| 欧美日韩一区精品| 精品亚洲免费视频| 日韩国产在线观看| 午夜精彩视频在线观看不卡| 久久精品国产一区二区| 97超碰欧美中文字幕| 久久99久久99小草精品免视看| 国产成人8x视频一区二区| 欧美中文字幕一区| 视频一区二区三区在线| 日韩一级二级三级精品视频| 免费观看在线综合色| 国产欧美一区二区三区在线老狼| 国产精品免费免费| 欧美久久久影院| 美女一区二区三区| 在线亚洲欧美专区二区| 亚洲天堂精品视频| 99精品久久久久久| 免费成人在线观看视频| 亚洲欧洲一区二区在线播放| 欧美麻豆精品久久久久久| 激情深爱一区二区| 亚洲成人久久影院| 丰满岳乱妇一区二区三区| 亚洲第一电影网| 中文字幕一区二区三中文字幕| 99久久99久久精品免费看蜜桃| 国产精品一区二区男女羞羞无遮挡| 日韩一区二区不卡| 亚洲国产色一区| 欧美一级免费观看| 精品第一国产综合精品aⅴ| xf在线a精品一区二区视频网站| 亚洲最大成人综合| 91精品国产一区二区人妖| 国产精品久久久久久妇女6080| 日韩成人一区二区| 国产精品污www在线观看| 日韩精品福利网| 精品少妇一区二区三区在线播放| 欧美日韩国产在线播放网站| 久久影音资源网| 欧美自拍偷拍午夜视频| 一区二区三区影院| 日本精品一区二区三区高清| 欧美国产一区在线| 久久精品无码一区二区三区| 亚洲福利一区二区三区| 亚洲女子a中天字幕| 一区二区三区国产精品| 欧美一个色资源| 国产尤物一区二区在线| 综合久久久久综合| 91丝袜呻吟高潮美腿白嫩在线观看| 亚洲一二三四区不卡|