下面是范文網小編整理的精選八年級數學教案4篇(八年級數學詳細教案),供大家參閱。

精選八年級數學教案1
教材分析
因式分解是代數式的一種重要恒等變形?!稊祵W課程標準》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應用中,也減少為兩個公式,但絲毫沒有否定因式分解的教育價值及其在代數運算中的重要作用。本章教材是在學生學習了整式運算的基礎上提出來的,事實上,它是整式乘法的逆向運用,與整式乘法運算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎,為數學交流提供了有效的途徑。分解因式這一章在整個教材中起到了承上啟下的作用。本章的教育價值還體現(xiàn)在使學生接受對立統(tǒng)一的觀點,培養(yǎng)學生善于觀察、善于分析、正確預見、解決問題的能力。
學情分析
通過探究平方差公式和運用平方差公式分解因式的活動中,讓學生發(fā)表自己的觀點,從交流中獲益,讓學生獲得成功的體驗,鍛煉克服困難的意志建立自信心。
教學目標
1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。
2、通過公式a -b =(a+b)(a-b)的逆向變形,進一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達能力。
3、能運用提公因式法、公式法進行綜合運用。
4、通過活動4,能將高偶指數冪轉化為2次指數冪,培養(yǎng)學生的化歸思想。
教學重點和難點
重點: 靈活運用平方差公式進行分解因式。
難點:平方差公式的推導及其運用,兩種因式分解方法(提公因式法、平方差公式)的綜合運用。
精選八年級數學教案2
一、教學目標
1.理解一個數平方根和算術平方根的意義;
2.理解根號的意義,會用根號表示一個數的平方根和算術平方根;
3.通過本節(jié)的訓練,提高學生的邏輯思維能力;
4.通過學習乘方和開方運算是互為逆運算,體驗各事物間的對立統(tǒng)一的辯證關系,激發(fā)學生探索數學奧秘的興趣。
二、教學重點和難點
教學重點:平方根和算術平方根的概念及求法。
教學難點:平方根與算術平方根聯(lián)系與區(qū)別。
三、教學方法
講練結合
四、教學手段
幻燈片
五、教學過程
?。ㄒ唬┨釂?/p>
1、已知一正方形面積為50平方米,那么它的邊長應為多少?
2、已知一個數的平方等于1000,那么這個數是多少?
3、一只容積為0。125立方米的正方體容器,它的棱長應為多少?
這些問題的共同特點是:已知乘方的結果,求底數的值,如何解決這些問題呢?這就是本節(jié)內容所要學習的。下面作一個小練習:填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
學生在完成此練習時,最容易出現(xiàn)的錯誤是丟掉負數解,在教學時應注意糾正。
由練習引出平方根的概念。
?。ǘ┢椒礁拍?/p>
如果一個數的平方等于a,那么這個數就叫做a的平方根(二次方根)。
用數學語言表達即為:若x2=a,則x叫做a的平方根。
由練習知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
?。?)2=—4
學生思考后,得到結論此題無答案。反問學生為什么?因為正數、0、負數的平方為非負數。由此我們可以得到結論,負數是沒有平方根的。下面總結一下平方根的性質(可由學生總結,教師整理)。
(三)平方根性質
1.一個正數有兩個平方根,它們互為相反數。
2.0有一個平方根,它是0本身。
3.負數沒有平方根。
?。ㄋ模╅_平方
求一個數a的平方根的運算,叫做開平方的運算。
由練習我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運算與開平方運算互為逆運算。根據這種關系,我們可以通過平方運算來求一個數的平方根。與其他運算法則不同之處在于只能對非負數進行運算,而且正數的運算結果是兩個。
?。ㄎ澹┢椒礁谋硎痉椒?/p>
一個正數a的正的平方根,用符號“ ”表示,a叫做被開方數,2叫做根指數,正數a的負的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數為2時,通常將這個2省略不寫,所以正數a的平方根也可記作“ ”讀作“正、負根號a”。
練習:1.用正確的符號表示下列各數的平方根:
?、?6 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
②247的平方根是
?、?。2的平方根是
?、?的`平方根是
?、?的平方根是
由學生說出上式的讀法。
例1。下列各數的平方根:
?。?)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根為±9。即:
?。?)
的平方根是 ,即
(3)
的平方根是 ,即
?。?)∵(±0。7)2=0。49,
∴0。49的平方根為±0。7。
小結:讓學生熟悉平方根的概念,掌握一個正數的平方根有兩個。
六、總結
本節(jié)課主要學習了平方根的概念、性質,以及表示方法,回去后要仔細閱讀教科書,鞏固所學知識。
七、作業(yè)
教材P。127練習1、2、3、4。
八、板書設計
平方根
(一)概念 (四)表示方法 例1
?。ǘ┬再|
(三)開平方
探究活動
求平方根近似值的一種方法
求一個正數的平方根的近似值,通常是查表。這里研究一種筆算求法。
例1。求 的值。
解 ∵92102,
兩邊平方并整理得
∵x1為純小數。
18x1≈16,解得x1≈0。9,
便可依次得到精確度
為0。01,0。001,……的近似值,如:
兩邊平方,舍去x2得19.8x2≈—1.01
精選八年級數學教案3
教學目的
1. 使學生熟練地運用等腰三角形的性質求等腰三角形內角的角度。
2. 熟識等邊三角形的性質及判定.
2.通過例題教學,幫助學生總結代數法求幾何角度,線段長度的方法。
教學重點
等腰三角形的性質及其應用。
教學難點
簡潔的邏輯推理。
教學過程
一、復習鞏固
1.敘述等腰三角形的性質,它是怎么得到的?
等腰三角形的兩個底角相等,也可以簡稱等邊對等角。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點B與點 C重合,線段BD與CD也重合,所以C。
等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱三線合一。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。
2.若等腰三角形的兩邊長為3和4,則其周長為多少?
二、新課
在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質呢?
1.請同學們畫一個等邊三角形,用量角器量出各個內角的度數,并提出猜想。
2.你能否用已知的知識,通過推理得到你的猜想是正確的?
等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質得到B=C,又由B+C=180,從而推出B=C=60。
3.上面的條件和結論如何敘述?
等邊三角形的各角都相等,并且每一個角都等于60。
等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?
等邊三角形也稱為正三角形。
例1.在△ABC中,AB=AC,D是BC邊上的中點,B=30,求1和ADC的度數。
分析:由AB=AC,D為BC的中點,可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。
問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?
問題2:求1是否還有其它方法?
三、練習鞏固
1.判斷下列命題,對的打,錯的打。
a.等腰三角形的角平分線,中線和高互相重合( )
b.有一個角是60的等腰三角形,其它兩個內角也為60( )
2.如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數。
四、小結
由等腰三角形的性質可以推出等邊三角形的各角相等,且都為60。三線合一性質在實際應用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。
五、作業(yè)
1.課本P127─7,9
2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,
EOD的度數。
(一)課本P127─1、3、4、8題.
精選八年級數學教案4
第一步:情景創(chuàng)設
乒乓球的標準直徑為40mm,質檢部門從A、B兩廠生產的乒乓球中各抽取了10只,對這些乒乓球的直徑了進行檢測。結果如下(單位:mm):
A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;
B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.
你認為哪廠生產的乒乓球的直徑與標準的誤差更小呢?
(1)請你算一算它們的平均數和極差。
?。?)是否由此就斷定兩廠生產的乒乓球直徑同樣標準?
今天我們一起來探索這個問題。
探索活動
通過計算發(fā)現(xiàn)極差只能反映一組數據中兩個極值之間的大小情況,而對其他數據的波動情況不敏感。讓我們一起來做下列的數學活動
算一算
把所有差相加,把所有差取絕對值相加,把這些差的平方相加。
想一想
你認為哪種方法更能明顯反映數據的波動情況?
第二步:講授新知:
?。ㄒ唬┓讲?/p>
定義:設有n個數據,各數據與它們的平均數的差的平方分別是,…,我們用它們的平均數,即用
來衡量這組數據的波動大小,并把它叫做這組數據的方差(variance),記作。
意義:用來衡量一批數據的波動大小
在樣本容量相同的情況下,方差越大,說明數據的波動越大,越不穩(wěn)定
歸納:(1)研究離散程度可用(2)方差應用更廣泛衡量一組數據的波動大小
?。?)方差主要應用在平均數相等或接近時
(4)方差大波動大,方差小波動小,一般選波動小的
方差的簡便公式:
推導:以3個數為例
?。ǘ藴什睿?/p>
方差的算術平方根,即④
并把它叫做這組數據的標準差.它也是一個用來衡量一組數據的波動大小的重要的量.
注意:波動大小指的是與平均數之間差異,那么用每個數據與平均值的差完全平方后便可以反映出每個數據的波動大小,整體的波動大小可以通過對每個數據的波動大小求平均值得到。所以方差公式是能夠反映一組數據的波動大小的一個統(tǒng)計量,教師也可以根據學生程度和課堂時間決定是否介紹平均差等可以反映數據波動大小的其他統(tǒng)計量。
精選八年級數學教案4篇(八年級數學詳細教案)相關文章:
★ 八年級數學下期教學工作總結5篇 人教版八年級下學期數學教學工作總結
★ 人教版六年級下冊數學教案3篇(小學人教版六年級數學下冊教案)