下面是范文網(wǎng)小編收集的《解方程》教學反思11篇(解決問題解方程教學反思),以供借鑒。
《解方程》教學反思1
《解方程》是學生接觸方程以來的第一堂計算課,理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。本著孩子比較感興趣的基礎(chǔ)上,本節(jié)課我采用的是課前預習,課上交流的形式進行,整節(jié)課大多數(shù)孩子在預習的基礎(chǔ)上能夠掌握方程的解法,但是個別孩子沒有掌握?,F(xiàn)反思如下:
1、出示預習提綱,讓孩子預習有根據(jù)。
為讓孩子形成自覺的學習習慣,師指導孩子進行預習,出示了以下三個問題:
一是什么是方程的解?舉例說明。
二是什么是解方程?你是根據(jù)什么來解方程?
三是如何進行方程的檢驗?
好多孩子能夠?qū)@幾個問題進行探究,并對意義理解比較深刻。
2、課上交流。
交流是學生思維火花的碰撞。對于什么是方程的解,孩子們舉例子,根據(jù)例題來詮釋方程的解的意義。在進行交流根據(jù)什么來解方程的環(huán)節(jié)中,孩子們各抒已見,有的是用加法中各部分間的關(guān)系,有的'是用等式的性質(zhì),還有的還接口答。依次把方法展示給大家,讓孩子明白方程的解的意義和解方程的過程。再確定統(tǒng)一的解答方法,這個環(huán)節(jié)孩子興趣很高,大部分孩子能夠?qū)W會利用等式的性質(zhì)進行解方程。整個的環(huán)節(jié)讓孩子在探究中發(fā)現(xiàn)規(guī)律,找到方法,學生學的開心,對于概念的理解也很扎實。
《解方程》教學反思2
今天所教的《等式的性質(zhì)2和解方程》是在《等式的性質(zhì)1》的基礎(chǔ)上進行教學的,使學生探索并理解“等式兩邊同時乘或除以同一個不等于0的`數(shù),所得結(jié)果仍然是等式”,學會應用等式的性質(zhì)解只含有乘法或除法運算的簡單方程。通過對教參的學習,我認為本課應該解決好以下幾個問題:
1.例5和例3的結(jié)構(gòu)基本相同,也是從天平圖表示的數(shù)量間的相等關(guān)系入手,應引導學生在觀察、分析、比較、抽象和概括等活動中,自主探索并理解等式的另一條性質(zhì)。
2.結(jié)合現(xiàn)實情境引導學生自主探索例6的解法。由于學生已經(jīng)初步掌握了解方程的一般步驟,教學過程中可以讓學生通過自主嘗試完成,再以討論的形式引導學生學會利用并理解相關(guān)條件尋找等量關(guān)系,再根據(jù)等量關(guān)系列方程。
3.應培養(yǎng)學生運用新知識解決方程的能力。通過學生嘗試,交流,教師適當?shù)脑u析,使學生明白在解方程的過程中,都應利用等式的性質(zhì)使方程的左邊只剩下x。
4.培養(yǎng)學生自覺檢驗的意識。
課中圍繞這些想法展開,效果不錯,就是有點前緊后松。
《解方程》教學反思3
解方程的內(nèi)容主要是在五年級就學過的,但六年級上期仍然出現(xiàn)了解方程的內(nèi)容,說明了這個知識點的重要性,既是重點,又是難點。在具體的解方程過程中,通過學生的課堂活動和課后作業(yè)反饋,總的說來,還是存在很大的問題。我出了12個題,全對的占少數(shù),一般要錯四個左右。下來后我進行了深刻的反思。發(fā)現(xiàn)了幾個主要錯誤:
1 馬虎。體現(xiàn)在抄題抄錯,全班64人有6個抄錯了題。
2 較復雜點的.解方程,思路混亂,不知道把哪一部分看作“整體”。 3 過于依賴計算器,對于除不盡的筆算出錯。
4錯得最多的是減數(shù)和除數(shù)中含有未知數(shù)的情況。
針對以上幾個錯誤,我認真做了分析,主要的原因有下面幾個: 1 課前過于高估學生,沒有系統(tǒng)的復習相關(guān)內(nèi)容。
2 現(xiàn)在這個班是上個五年級兩個班重新分的班,下來我問了前面教過的數(shù)學老師,兩個老師教的方法不一樣。
3 作業(yè)量不夠。
所以,在后期的教學中做了一些調(diào)整:
1 系統(tǒng)復習了相關(guān)知識。
2 多作例題講解,由易入難。
3 有針對性的出題,容易出錯的地方進行大量的練習。
4 搞了一個“我是一個小老師”的活動,全對的同學給其他同學當老師,一個對一個的教。
5 要求每個同學都獨立的出一個解方程的題,然后請一個同學完成并作評價。
經(jīng)過鍛煉,現(xiàn)在對解方程這個這知識點,同學們興趣和完成率大有提高。
《解方程》教學反思4
今天,上了冀教版五年級上冊《解方程》一課,我就本節(jié)課的得與失做一下反思。
一、課程分析
方程是五年級學生接觸的一種新的知識內(nèi)容,在建立了用字母表示數(shù)的已有知識基礎(chǔ)上,進一步學習本節(jié)課內(nèi)容,方程是數(shù)學數(shù)與代數(shù)部分的內(nèi)容,起著舉足輕重的作用。方程是學生解決數(shù)學問題一種重要工具,日后初中、高中時時刻刻離不開方程。所以,我對本單元內(nèi)容很重視,也給學生講述其重要性,重點還是要讓學生在學習、使用的過程中體會方程的優(yōu)勢。本節(jié)課是本單元的第三節(jié)內(nèi)容,在學習了等式的性質(zhì)的基礎(chǔ)上,解簡單的方程。因此,我制訂了以下教學目標:
1.經(jīng)歷自主探究、合作交流學習利用等式的性質(zhì)解方程的過程。
2.能根據(jù)具體情境,找到等量關(guān)系、列方程并解簡單的方程。
3.積極參與數(shù)學活動,獲得運用已有知識解決問題的成功體驗,激發(fā)解方程的興趣。
二、教學過程
1.復習舊知導入。復習剛剛學過的等式的性質(zhì),學生舉例說明。
2.交流解疑。先對子交流、小組交流,解決預習過程中的疑問,同時整理出小組未能解決的疑難問題。
3.展示交流。學生代表1展示問題1的解決方法,學生提問、補充。這里使學生理解用方程解決問題的步驟、解方程的方法、檢驗的方法。學生代表2展示問題2的解決方法,再次理解以上問題。
4.理解新概念。觀察兩個解方程的式子,理解方程的解、解方程的概念。讓學生對比理解方程的解是結(jié)果,解方程是過程。
5.鞏固訓練、強調(diào)細節(jié)。學生自主完成試一試兩題,出錯時讓學生指正。若未出錯,強調(diào)注意寫“解”、等號對齊等細節(jié)。
三、課后反思
本節(jié)課需要改進的地方
1.學習目標的制定與出示。上課之前只給學生說了我們本節(jié)課要利用等式基本性質(zhì)來解方程,目標不具體。我們應為學生制定具體的學習目標,同時要讓學生知道??梢栽诮o學生預習時,給學生以問題的形式出示給學生。一次本節(jié)課學習目標應為:(1)用方程解決問題的步驟是什么?(2)解方程的依據(jù)是什么?(3)什么叫方程的解?什么叫解方程?
2.舊知復習時間過長。學生復習等式性質(zhì)時,舉例出現(xiàn)問題,浪費了許多時間,造成了前松后緊的`局面。應該簡單復習,或讓學生在探索新知的過程中發(fā)現(xiàn)舊知,復習舊知。
3.小組合作的實效性?,F(xiàn)在我班的小組合作還不扎實,或者說實效性不強。學生在討論的過程中不知道該如何合作、如何交流??梢哉f是有形無實,接下來要再次培訓組長,讓組長有組織、帶領(lǐng)小組同學有效合作。同時,訓練其他同學如何參與,交流什么。使小組合作更具實效性。
四、教學思考
1.教學有法,但無定法。我們在求疑嘗試的主體學習方法下,應探索出屬于自己的上課模式或者方法。我一直在想數(shù)學四大模塊應有不同的教學方法,例如圖形問題注重操作、可能性問題注重游戲體驗等。
2.全面關(guān)注學生,關(guān)注全體學生。我的班級是一個比較活躍的班級,這里的活躍其實只是課堂上七、八個積極同學的表現(xiàn),這種現(xiàn)象的背后還有更多的同學沒有參與、只是聽眾,沒有參與就沒有思考,沒有思考地學數(shù)學何來成效。所以最近一直在關(guān)注大號同學的表現(xiàn),教師關(guān)注會使他們獲得自信,獲得成功后的喜悅,學習也自然有動力。舉個我們班的例子:上《認識方程》一課時,因為較簡單,整節(jié)課我一直在關(guān)注3、4號同學的表現(xiàn),給他們更多的機會展示,結(jié)果課后我發(fā)現(xiàn)3、4號同學的作業(yè)有明顯的進步,甚至有個別4號同學比組長寫的都要好。也就是欣賞、關(guān)注的成果。
以上兩個問題有待我們一起思考,請各位領(lǐng)導、戰(zhàn)友多提寶貴意見!
《解方程》教學反思5
有昨天加減法方程作鋪墊,今天乘除法方程的解答可以說是順水推舟,毫不費力。學生完全能夠通過遷移自主探索出解法。但令我頭痛的是如何引導學生會解形如a-x=b及a÷x=b方程。
本以為按新課標教材這兩類方程小學階段不用掌握,但在學期初教材分析會上教研員明確指明:這兩類方程教師必須作為例題向?qū)W生補充講解,且屬于學生必會、考試必考內(nèi)容。原因如下:1、在列方程解決實際問題時,學生中往往會出現(xiàn)以上兩種類型方程,教師難以回避。2、如果教師有意回避,會使學生產(chǎn)生等式的基本性質(zhì)只適用于部分方程的錯誤理解。
基于上述原因,我今天在教學完例2后為學生補充了相應內(nèi)容,但教學效果較差。雖然許多學生能根據(jù)加減乘除各部分之間的關(guān)系推導出X的'值,但當要求他們根據(jù)等式的性質(zhì)來解答時,嘗試成功。通過指導,全班也只有50%左右的學生基本掌握解答的方法。分析此次教學失敗的原因可能是安排的時機還不夠成熟。因為學生剛接觸解方程沒多久,還須一段時間鞏固教材中最基本的常見方程類型,而今天補充的兩種類型雖然與例題一樣,都是根據(jù)等式的基本性質(zhì),但在解答第一步時不再是思考“怎樣才能使天平左邊只剩X,而保持天平平衡”的問題了。學困生聽完拓展練習后,作業(yè)中出現(xiàn)明顯混淆的現(xiàn)象。如5X=1.5本應根據(jù)等式的性質(zhì)直接將等號兩邊同時除以5求解的,可卻有學生先將等式兩邊同時除以X,變成了“1.5÷X=5”, 這可真是越變越復雜。
值得思考的是,如果必須兩教a-x=b及a÷x=b兩類方程,你們覺得是按加減乘除法各部分之間的關(guān)系教好呢,還是按等式的性質(zhì)教學好呢?
《解方程》教學反思6
前兩天講解了簡單的方程的解法,加法、減法乘法除法的,覺得孩子們接受的不錯,一節(jié)課下來練習了好多題,每個孩子都能得心應手,自己還有點竊喜??墒墙裉靺s讓我大跌眼鏡。
昨天上課講解了例4和例5,孩子們對了復雜的方程有了初步認識,但在每一步的分析之下孩子們也覺得很熟悉,原來是簡單的方程結(jié)合在一起變成復雜的,只要掌握運算順序就不難,結(jié)合例題的圖示,分彩筆的例子,先分什么再分什么,讓學生明白在具體算式中也是結(jié)合著實物圖來做,先把3x看做一個整體,把剩下的4根彩筆減掉,要想得到一整盒x根的'彩筆,就得把3整盒再平均分配,這樣下來孩子們能夠明白每一步的意思,他們能夠知道先處理多余的彩筆,再考慮整盒的彩筆。這樣下來理解也不是問題,又練了幾道同類的題,也很順手。例5的講解上有些難度,孩子始終不太理解把括號看做一個整體,但在講解和練習下也能做上了。
今天我想驗收一下昨天學的怎么樣,結(jié)果讓我很頭疼,為什么過了一宿好多同學又沒了思緒,留了6道題,少數(shù)幾個好同學能夠順利的做上,大部分同學還在思索著,課下輔導了幾個差生,原來他們又把前面學的簡單的方程解法又忘了,自己思考了一下,得給孩子們消化時間,課上會了不代表他們一直不忘,還得多加練習啊
《解方程》教學反思7
教材是利用等式的性質(zhì)來解方程。通過天平游戲,探索等式兩邊都加上(或減去)同一個數(shù),等式仍然成立,等式兩邊都乘一個數(shù)(或除以一個不為0的數(shù)),等式仍然成立的性質(zhì)。利用探索發(fā)現(xiàn)的等式的性質(zhì),解簡單的方程。如求出y+8=10中的未知數(shù)y。教材呈現(xiàn)了兩種思路。一種是學生直接想“?+8=10”,從而得出答案。另一種是利用等式的'性質(zhì)解方程,即“方程的兩邊都減8”的方法。y+8-8=10-8,y=2。這樣解方程,剛開始時,為了學生理解方便,等號左邊的“+8-8”都要寫出來,會比較麻煩,也容易出錯?!稊?shù)學課程標準》提倡算法多樣化的新理念,激發(fā)了我對解方程這課從不同的角度來進行解讀和探討,因此,在學生理解了用等式的性質(zhì)解方程后,我又留給學生一定的時間和空間,讓學生獨立思考,發(fā)揮各自的聰明才智,自主探索,找出不同的解題方法。
學生經(jīng)歷了獨立思考,掌握的知識才更深刻、更透徹。久而久之,將促使學生養(yǎng)成獨立思考的習慣,培養(yǎng)了學生解決問題的能力。將學生的方法整理后,我又適時給學生提供了另外兩種解方程的方法,利用加、減、乘、除法各部分之間的關(guān)系來解方程和通過移項來解方程。
《解方程》教學反思8
本節(jié)課的學生學習的重難點是掌握較復雜方程的解法,會正確分析題目中的數(shù)量關(guān)系;學習目標是進一步掌握列方程解決問題的方法。這一小節(jié)內(nèi)容是在前面初步學會列方程解比較容易的應用題的基礎(chǔ)上,教學解答稍復雜的兩步計算應用題。例1若用算術(shù)方法解,需逆思考,思維難度大,學生容易出現(xiàn)先除后減的錯誤,用方程解,思路比較順,體現(xiàn)了列方程解應用題的優(yōu)越性。
一、從學生喜聞樂見的事物入手,降低問題的難度。
解稍復雜的方程這部分內(nèi)容煩瑣乏味,解答例1這類應用題的關(guān)鍵是找題里數(shù)量間的相等關(guān)系。為了幫助學生找準題量的等量關(guān)系。我從學生喜歡的事物入手,引出數(shù)學問題,激發(fā)學生的學習數(shù)學的興趣,又為學習新知識做了很多的鋪墊。
二、放手讓學生思考、解答,選擇解題最佳方案。
讓學生當小老師,從問題中找出數(shù)量之間的關(guān)系,弄清解決問題的思路,展示講解自己的思考過程和結(jié)果,這樣既增加學生學習的信心,又培養(yǎng)學生分析問題的能力,發(fā)展學生的思維空間;然后,我大膽放手,讓學生用自己學過的方法來解答例1,最后老師讓學生把各種不同的`解法板演在黑板上,讓學生分析哪種解法合理,再從中選擇最佳解題方案。這樣既突出了最佳解題思路,又強化了列方程解題的優(yōu)越性和解題的關(guān)鍵,促進了學生邏輯思維的發(fā)展。
三、教會學生學習方法,比教會知識更重要。
應用題的教學,關(guān)鍵是理清思路,教給方法,啟迪思維,提高解題能力。這節(jié)課的教學中,教師敢于大膽放手,讓學生觀察圖畫,了解畫面信息,白色多少塊,黑色多少塊,白色比黑色少多少等信息,組織學生小組討論交流,再在練習本上畫線段圖,然后指導學生根據(jù)線段圖,分析數(shù)量之間的關(guān)系,討論交流解決問題的方法。
讓學生成為學習的主人,參與到教學的全過程中去。所以在應用題的教學中,教師要指導學生學會分析應用題的解題方法,一句話,教會學生學習方法比教會知識更重要,讓學生真正成為學習的主體。教師是教學過程的組織者、引導者。
《解方程》教學反思9
本節(jié)課的內(nèi)容包括兩個方面:一是理解“等式兩邊同時加上或減去同一個數(shù),所得結(jié)果仍然是等式”,二是應用等式的性質(zhì)解只含有加法和減法運算的簡單方程。解方程是學生剛接觸的新知識,學生原有的知識儲備與生活經(jīng)驗不足,因此教學中老師要時刻關(guān)注學生的學習的情況,引導學生經(jīng)歷將現(xiàn)實生活問題加以數(shù)學化,引導學生通過操作、觀察、分析和比較,由具體的知識滲透到抽象的去理解等式的性質(zhì),并應用等式的性質(zhì)來解方程。在這節(jié)課的教學中,應讓學生理解并掌握等式的性質(zhì),這是為學生后續(xù)學習方程打下較扎實的基礎(chǔ)。
一、讓學生通過動手、操作、觀察中去發(fā)現(xiàn)等式的性質(zhì)
老師先出示天平,并在天平兩邊各放一個20克的砝碼,“你能用式子表示出兩邊的關(guān)系?”生寫出20=20;教師在天平的一邊增加一個10克砝碼,“這時的關(guān)系怎么表示?”生寫出20+10>20,“這時天平的兩邊不相等,怎樣才能讓天平兩邊相等?”生交流得出在天平的另一邊增加同樣重量的砝碼;然后依次出現(xiàn)后續(xù)的三幅天平圖,學生觀察,教師板書,并組織學生小組討論交流:“你有什么發(fā)現(xiàn)嗎?”通過全班交流,在交流中教師應逐步提示,因為這是一個全新的知識,得出等式的性質(zhì)。最后,讓學生自己寫幾個等式看一看。通過具體的操作為學生探究問題,尋找結(jié)論提供了真實的.情境,富有啟發(fā)性、引領(lǐng)性,讓學生經(jīng)歷了解決問題的過程,并在問題的解決中發(fā)現(xiàn)并掌握了知識。
二、讓學生運用等式的性質(zhì)解方程
引入了等式的性質(zhì),其目的就是讓學生應用這一性質(zhì)去解方程,第一次學習解方程,學生心理上難免會有些準備不足,為了幫助學生應用等式的性質(zhì)解方程,課前布置了學生預習,課中我先讓學生嘗試練習,但巡視中發(fā)現(xiàn)學生沒有根本理解,我就利用天平所顯示的數(shù)量關(guān)系,引導學生發(fā)現(xiàn)“在方程的兩邊都減去10,使方程的左邊只剩下x”,并詳細講解解方程的書寫格式,包括檢驗。通過這樣有步驟的練習,幫助學生逐漸掌握解方程的方法。然后讓學再次通過修正,試一試,鞏固解方程的知識。本節(jié)課達到了預期的效果。
三、遺憾的是,由于星期一集體活動的沖突,導致今天的上課時間30分鐘都不到,因此學生的交流顯得不充分,教師的重點講解顯得不到位
《解方程》教學反思10
今天對五年級上冊《解方程》進行了教學。本課主要對教學例一和例二進行了教學。
一、本節(jié)課的教學重點和難點是:理解“方程的解”、“解方程”兩個概念;會運用天平平衡的道理解簡單的方程。在教學環(huán)節(jié)的設(shè)計和安排上,盡量為突破教學重點和難點服務,因此我進行了大膽的嘗試,在講解方程的解時,給學生一個明確的目的,告訴他們:“解方程就是為了求出“方程的解”而“方程的解”是一個神奇的數(shù),由此引起了學生的好奇心,通過練習讓學生充分感知“方程的解”的神奇之處。既讓學生充分理解“方程的解”是一個數(shù),“解方程”是一個過程,同時又為最后的檢驗做好充分的準備。每一次的解方程我讓孩子們看成是解謎,是尋寶,比一比看誰找的是寶石,誰找的是石頭,用你自己的方法就可以驗證。孩子們做的是津津有味,尋得異常開心。在不知不覺中學會了本節(jié)課的知識。對于概念的理解也很扎實。
二、在練習題的安排上也做了精心的安排,當講授完利用天平平衡的道理解方程后,馬上進行了“填空練習”,這四個練習題的安排也是經(jīng)過精心考慮的:第一個方程中的數(shù)是整數(shù),與例題相符合,較容易。第二個方程中的數(shù)變成小數(shù),難度有所提高。第三和第四個方程,又有所變化,但解方程的方法是沒有變的。從課堂的.教學和課后的練習看,學生對解方程掌握的還不錯。
三、本課主要對解方程進行了解題練習。通過搶奪小紅花等游戲的形式大大提高了學生學習數(shù)學的樂趣和興趣!
四、通過本課的作業(yè)檢測,有少量學生還是對本課的內(nèi)容練習不是很到位。需要教師在課下不斷的指導。
五、學生對于方程的書寫格式掌握的很好,這一點很讓人欣喜。
總之,“興趣是學生最好的老師”,只要緊緊抓住這一點,教學質(zhì)量的提高指日可待。
《解方程》教學反思11
學生從五年級就開始接觸簡易方程,經(jīng)歷一年多的學習對于方程有了一定的認識,然而為何要設(shè)單位“1”的量為未知數(shù)這個問題在列方程解決稍復雜的分數(shù)實際問題時就一直困擾著學生。列方程解決稍復雜的百分數(shù)實際問題是小學階段的最后一個有關(guān)方程學習的單元,因此有必要從本質(zhì)上去撥開學生心中為何要設(shè)單位“1”的量為未知數(shù)的那團云。正好借助這節(jié)課通過對比分析的方法幫助學生很好的解決這個困惑。
案例描述:蘇教版數(shù)學六年級下冊教材
教材例5:朝陽小學美術(shù)組有36人,女生人數(shù)是男生人數(shù)的80%。美術(shù)組男生、女生各多少人?
學生能很快根據(jù)題目條件進行相關(guān)的找單位“1”分析數(shù)量關(guān)系的解題前期準備,經(jīng)歷這這兩步后學生通過已有經(jīng)驗可以很快確定用方程的策略來解決這個問題。
在教學的過程中,筆者故意提出:這里男生人數(shù)和女生人數(shù)都是未知的,那么你們覺得怎樣設(shè)未知數(shù)比較合理呢?學生在底下開始異口同聲地回答設(shè)單位“1”的量也就是男生人數(shù)為未知數(shù)比較合理。設(shè)美術(shù)組有男生X人,女生就有80%X人。那么根據(jù)等量關(guān)系式:男人人數(shù)+女生人數(shù)=36學生很自然地列出方程
X+80%X=36。就在大家十分“得意”的時候,一個小男孩發(fā)表了自己不同的意見:“也可以把女生人數(shù)設(shè)為X?!眲傞_始很多同學覺得有點不可思議,以前做這類問題不都是將男生人數(shù)(單位“1”)設(shè)為未知數(shù)X的嗎?抓住這個千載難逢的機會,我就讓他說說他是怎么想的.。他是這么說的:設(shè)女生人數(shù)是X人,男生人數(shù)是X÷80%人,根據(jù)等量關(guān)系式:男人人數(shù)+女生人數(shù)=36列出方程:X+X÷80%=36。聽完他精彩的發(fā)言,大家恍然大悟,原來還可以這樣?
仔細回想這個聰明男孩的問題,原來數(shù)學真的需要動腦。這個問題在學習分數(shù)除法之前教材是一直在回避的,到了這里我靈機一動將題目改成:教材例5:朝陽小學美術(shù)組有36人,女生人數(shù)是男生人數(shù)的2倍。美術(shù)組男生、女生各多少人?那你覺得這個問題我們以前是怎么解決的?學生很自然的想到把一份數(shù)男生人數(shù)設(shè)為X人,女生有2X人,方程:X+2X=36。那如果一定要把女生人數(shù)設(shè)為X人呢?學生思考了一會列出:X+X÷2=36,這個方程沒有學習分數(shù)除法之前學生是沒有辦法解出來的,可能這就是教材一直回避的重要原因吧。但是學生學習了分數(shù)除法,理解了分數(shù)和百分數(shù)的意義之后憑借自己的理解列出超乎常規(guī)的方程的勇氣是值得肯定的。經(jīng)過這兩個問題的對比,學生明白了設(shè)未知量也是很重要的。課上到這里,并不是去推翻學生已有的經(jīng)驗,而是讓學生有這樣一種意識:數(shù)學很多時候不是一種硬性規(guī)定,遇到這類問題只能設(shè)單位“1”的量為未知數(shù)。于是我順水推舟讓學生比較了這兩個方程:X+80%X=36、X+X÷80%=36哪一個解起來不較容易?學生通過計算終于明白:X+80%X=36方程的優(yōu)越性,于是又回到了:男生人數(shù)和女生人數(shù)都是未知的,那么你們覺得怎樣設(shè)未知數(shù)比較合理呢?通過這樣的對比進一步讓學生體驗到了:設(shè)男生人有X人(單位“1”的量為未知數(shù)的)合理性,不僅僅能很快表示出女生80%X人,而且X+80%X=36是學生熟悉的形如:aX+bX=c(這里a,b,c已知),而X+X÷80%=36這個方程不是學生熟悉的類型,是需要學生根據(jù)除法將它轉(zhuǎn)化為aX+bX=c,這一步轉(zhuǎn)化至關(guān)重要。經(jīng)過上述的兩次對比學生終于明白了:為什么在設(shè)未知量的時候一般要把單位“1”的量設(shè)為未知數(shù)了。有了這樣的深刻的體驗,學生解決這類問題就十分自然,心中的困惑可能就會煙消云散。
《解方程》教學反思11篇(解決問題解方程教學反思)相關(guān)文章: