下面是范文網(wǎng)小編收集的八年級勾股定理教學反思6篇 勾股定理復習課教學反思,供大家賞析。

八年級勾股定理教學反思1
對于“勾股定理的應用”的反思和小結有以下幾個方面:
1、課前準備不充分:
基礎題中是一些由正方形和直角三角形拼合而成的圖形(與希臘郵票設計原理相同),其中兩個正方形的面積分別是14和18,求最大的正方形的面積。
分析:由勾股定理結論:直角三角形中兩直角邊的平方和等于斜邊的平方。
其實質即以直角三角形兩直角邊為邊長的兩個正方形面積之和等于以斜邊為邊長的正方形的面積。但學生竟然不知道。其二是課件準備不充分,其中有一道例題的答案是跟著例題同時出現(xiàn)的,再去修改,又浪費了一點時間。其三,用面積法求直角三角形的高,我認為是一個非常簡單的.數(shù)學問題,但在實際教學中,發(fā)現(xiàn)很多學生仍然很難理解,說明我在備課時備學生不充分,沒有站在學生的角度去考慮問題。
2、課堂上的語言應該簡練。這是我上課的最大弱點,我不敢放手讓學生去獨立思考問題,會去重復題目意思,實際上不需要的,可以留時間讓學生去獨立思考。教師是無法代替學生自己的思考的,更不能代替幾十個有差異的學生的思維。課堂上老師放一放,學生得到的更多,老師放多少,學生就有多大的自主發(fā)展的空間。但這里的“放多少”是一門藝術,我要好好向老教師學習!
3、鼓勵學生的藝術。教師要鼓勵學生嘗試并尊重他們不完善的甚至錯誤的意見,經常鼓勵他們大膽說出自己的想法,大膽發(fā)表自己的見解,真正體現(xiàn)出學生是數(shù)學學習的主人。
4、啟發(fā)學生的技巧有待提高。啟發(fā)學生也是一門藝術,我的課堂上有點啟而不發(fā)。課堂上應該多了解學生。
八年級勾股定理教學反思2
《勾股定理》一章檢測結果出來了,學生考績很不理想,很多不該錯的題做錯了。是什么原因致使錯誤頻出呢?我輾轉反側。
一是沒有把握好勾股定理的適用范圍。勾股定理只適用直角三角形,而不適用鈍角三角形和銳角三角形。例如:在△ABC中,AC=3,BC=4,有的同學直接根據(jù)勾股定理得:AB=5。這是因為與勾股定理的條件相似,已知三角形的兩邊,求第三邊,滿足能利用勾股定理解決問題的特征之一,卻忽略特征之二:勾股定理只適用直角三角形。
二是沒有弄清楚待求的直角三角形的第三邊是斜邊還是直角邊。例如:已知直角三角形兩直角邊的長分別是4c和5c,求第三邊的長。很多同學可能是受勾股數(shù)“3,4,5”的影響,錯把結果寫成了3c,其實這里的第三邊是斜邊.
三是缺乏分類思想,考慮問題不全面,導致解答錯誤。例如:已知直角三角形兩邊長分別是1、4,求第三邊的長。這里的第三邊有可能是斜邊也有可能是直角邊,所以結果應該有兩個,但好多同學都填了一個答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面積。此題應考慮三角形是銳角三角形,還是鈍角三角形兩種情況,否則會漏解。
四是利用直角三角形的判別條件時,沒有分清較短邊和較長邊。例如:已知三角形的三邊長分別為a=0.6,b=1,c=0.8,問這個三角形是直角三角形嗎?有的同學認為此三角形不是直角三角形,其實這個三角形是以b為斜邊的直角三角形。
五是缺少方程思想和轉化思想,使綜合類試題痛失分數(shù)。
六是書寫不規(guī)范。例如:運用直角三角形的判別條件,判別一個三角形是否為直角三角形的過程中,有的同學寫出一句“由勾股定理得”的不恰當?shù)臄⑹觥?/p>
針對上述問題,痛定思痛,感悟頗多:
第一,教學不可削弱技能的訓練。要學生真正掌握某個知識,如果缺少相應技能的訓練是不科學的。正如教人開車的.教練把開車的要點、技巧講清楚,然后叫學車的學生馬上開車去考試一樣。試問:當教師在講臺上滔滔不絕地講解時,能否保證每一個學生都專心去聽?能否保證每一個專心去聽的學生都聽得明白?能否保證每一個聽得明白的學生都能解同一類題目?可見:“課堂上教師講,學生聽,聽就會懂,懂就會做?!敝皇墙處熞粠樵傅淖龇?,教師只有不滿足于自己的“講清楚”,在課堂上幫助學生獨立完成,并進行一定量的訓練,才能實現(xiàn)教學的有效性。
第二,巧設錯誤案例,讓學生辨錯、糾錯,即學生對教師的有意“示錯”進行分析、判斷,提高防錯能力。在教學中,教師有時可恰到好處,有意地把估計學生易錯的做法顯示給學生,以引起學生的注意,然后通過師生共同分析錯因,加以糾錯,達到及時、有效預防,并避免學生出現(xiàn)類似錯誤的目的。這樣,可防患于未然,并提高學生分析、判斷、解決問題的能力。
第三,教學應注重數(shù)學思想和方法傳授。理解掌握各種數(shù)學思想和方法是形成數(shù)學技能技巧,提高數(shù)學能力的前提。 學生學習數(shù)學,學會是基礎,會學是目的,教是為了不教。教學中,在加強技能訓練的同時,要強化數(shù)學思想和數(shù)學方法的教學,做到講方法聯(lián)系思想,以思想指導方法,使二者相互交融,相得益彰。此外,在教學中培養(yǎng)學生的“問題意識”,激勵學生善于發(fā)現(xiàn)問題、思考問題,并能運用數(shù)學方法去解決廣泛的多種多樣的實際問題,以便增強學生探究新知識、新方法的創(chuàng)造能力。
第四,教學應加大綜合訓練的力度。目前的綜合題已經由單純的知識疊加型轉化為知識、方法和能力綜合型尤其是創(chuàng)新能力型試題,具有知識容量大、解題方法多、能力要求高、突顯數(shù)學思想方法的運用以及創(chuàng)新意識等特點。教學時應抓好“三轉”能力的培養(yǎng):(1)語言轉換能力。每道數(shù)學綜合題都是由一些特定的文字語言、符號語言、圖形語言所組成,解綜合題往往需要較強的語言轉換能力,能把普通語言轉換成數(shù)學語言。(2)概念轉換能力:綜合題的轉譯常常需要較強的數(shù)學概念的轉換能力。(3)數(shù)形轉換能力。解題中的數(shù)形結合,就是對題目的條件和結論既分析其代數(shù)含義又分析其幾何意義,力圖在代數(shù)與幾何的結合上找出解題思路。只有如此,方可找到解決綜合題的突破口。
第五,教學勿忘發(fā)揮板書的特有功能。板書通過學生的視角器官傳遞信息,比語言富有直觀性。條例清晰,層次分明,邏輯嚴謹?shù)慕獯疬^程的板演,不但便于學生理解、掌握知識,還會給學生起到示范作用。
相信通過反思教學,優(yōu)化方法,細化過程,一定能取得事半功倍之效。
八年級勾股定理教學反思3
時光稍縱即逝,轉眼間一個新的學期又要結束了,回顧已逝的教學時光,可謂百味俱全,其間有一節(jié)課我上得最投入、最值得回憶與反思。
記得那是期末的展示匯報課,(主任說可能會有校外的教師來聽課。)我當時很有壓力,晚上也難以入睡。我選的是《勾股定理》一課。為了上好這節(jié)課,我反復研究了去洋思學習的一些記錄,努力用新理念新手段來打造我的這節(jié)課。當我滿懷信心地上完這節(jié)課時,我心情愉悅,因為我教態(tài)自然得體,與學生合作默契,基本上獲得了教學的成功。
1、從生活出發(fā)的教學讓學生感受到學習的快樂
在“勾股定理”這節(jié)課中,一開始引入情景:
平平湖水清可鑒,荷花半尺出水面。
忽來一陣狂風急,吹倒荷花水中偃。
湖面之上不復見,入秋漁翁始發(fā)現(xiàn)。
花離根二尺遠,試問水深尺若干。
知識回味:復習勾股定理及它的公式變形,然后是幾組簡單的計算。
2、走進生活:
以裝修房子為主線,設計木板能否通過門框,梯子底端滑出多少,求螞蟻爬的'最短距離,這些都是勾股定理應用的典型例題。
3、名題欣賞:
首尾呼應,用“代數(shù)方法”解決“幾何問題”。印度數(shù)學家婆什迦羅(1141—1225年)提出的“荷花問題”比我國的“引葭赴岸”問題晚了一千多年?!耙绺鞍丁眴栴},是我國數(shù)學經典著作《九章算術》中的一道名題?!毒耪滤阈g》約成書于公元一世紀。該書的第九章,即勾股章,詳細討論了用勾股定理解決應用問題的方法。這一章的第6題,就是“引葭赴岸”問題,題目是:“今有池一丈,葭生其中央,出水一尺。引葭赴岸,適與岸齊。問水深、葭長各幾何?” “荷花問題”的解法與“引葭赴岸”問題一樣。它的出現(xiàn)卻足以證明,舉世公認的古典數(shù)學名著《九章算術》傳入了印度?!毒耪滤阈g》中的勾股定理應用方面的內容,涉及范圍之廣,解法之精巧,都是在世界上遙遙領先的,為推動世界數(shù)學的發(fā)展作出了貢獻。鼓勵學生可以自己利用課余時間查閱相關資料,豐富知識。
4、在教學應用勾股定理時,老是運用公式計算,學生感覺比較厭倦,為了吸引學生注意力,活躍課堂氣氛,拓寬學生思路,運用多媒體出示了一道“智慧爺爺”出的思考題:
即折竹抵地問題。并且將問題用動畫的形式展現(xiàn)出來,不僅將問題形象化,又提高了學生的學習興趣。同時將實際的問題轉化為數(shù)學問題的過程用直觀的圖形表示,在降低難度的同時又鼓勵了學生能夠看到身邊的數(shù)學,從而做到學以致用。最后讓學生互相討論,就這樣讓學生在開放自由的情況下解決了該題,同時培養(yǎng)了學生之間的合作。
5、最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學生下課之后進行查閱、了解。
這是為了方便學生到更廣闊的知識海洋中去尋找知識寶藏,利用網(wǎng)絡檢索相關信息,充實、豐富、拓展課堂學習資源,提供各種學習方式,讓學生學會選擇、整理、重組、再用這些更廣泛的資源。這種對網(wǎng)絡資源的重新組織,使學生對知識的需求由窄到寬,有力的促進了自主學習。這樣學生不僅能在課堂上學習到知識,還讓他們有了怎樣學習知識的方法。這就達到了新課標新理念的預定目標。
通過本節(jié)課的教學,學生在勾股定理的學習中能感受“數(shù)形結合”和“轉化”的數(shù)學思想,體會數(shù)學的應用價值和滲透數(shù)學思想給解題帶來的便利;感受人類文明的力量,了解勾股定理的重要性。真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學習。這堂課將信息技術融入課堂,有利于創(chuàng)設教學環(huán)境,教學模式將從以教師講授為主轉為以學生動腦動手自主研究、小組學習討論交流為主,把數(shù)學課堂轉為“數(shù)學實驗室”,學生通過自己的活動得出結論、使創(chuàng)新精神與實踐能力得到了發(fā)展。不足之處:學生合作意識不強,討論氣氛不夠活躍;計算不熟練,書寫不規(guī)范。
八年級勾股定理教學反思4
根據(jù)學生的認知結構與教材地位,為了達到本節(jié)課的教學目標,我設計了以下幾個環(huán)節(jié):
1.創(chuàng)設情境,提出猜想讓學生判斷兩位同學的畫法是否都能得到斜邊為10cm的直角三角形,通過對不同畫法的探究,溫故知新,為用構造全等三角形的方法證明勾股定理的逆定理做好鋪墊.同時,引導學生從特殊到一般提出猜想。
2.證明猜想,得出新知。由于有前一環(huán)節(jié)的鋪墊,通過啟發(fā)、引導、討論,讓學生體會用構造全等三角形的方法證明問題的思想,突破定理證明這一難點,并適時出示課題。
3.應用訓練,鞏固新知為了鞏固新知,靈活運用所學知識解決相應問題,提高學生的分析解題能力,我設計了三個層次的問題,以達到教學目標.第一層次是讓學生直接運用定理判斷三角形是否是直角三角形,掌握定理基本運用;第二層次是強調已知三角形三邊長或三邊關系,就有意識的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應用,又為下一個層次做好了鋪墊;第三層次是靈活運用勾股定理與逆定理解決圖形面積的計算問題.根據(jù)學生原有的認知結構,讓學生更好地體會分割的思想.設計的題型前后呼應,使知識有序推進,有助于學生的理解和掌握;讓學生通過合作、交流、反思、感悟的過程,激發(fā)學生探究新知的興趣,感受探索、合作的樂趣,并從中獲得成功的體驗.真正體現(xiàn)學生是學習的主人.。
4.歸納小結,形成體系讓學生交流學習的'收獲、課堂經歷的感受和對數(shù)學思想方法的感悟體會等.幫助學生內化新知,優(yōu)化學生的認知結構,形成能力,減輕課后負擔。
5.布置作業(yè),課外延伸分層布置作業(yè),目的是讓不同的學生得到不同層次的發(fā)展
八年級勾股定理教學反思5
在講解勾股定理的結論時,為了讓學生更好地理解和掌握勾股定理的探索過程,先讓學生自己進行探索,然后同學進行討論,最后上臺演示。這樣可以加深學生的參與,也讓師生間、生生間有了互動。然后老師再利用電腦演示直角三角形中勾股定理的探索過程。反復演示幾遍,讓學生自己感覺并最后體會到勾股定理的結論。通過動畫演示體會到解決問題的方法是多種多樣,使得這課的重難點輕易地突破,大大提高了教學效率,培養(yǎng)了學生的解決問題的能力和創(chuàng)新能力。學生在這一過程中各顯神通,都得到了解決問題的滿足感和自豪感。
在教學應用勾股定理時,老是運用公式計算,學生感覺比較厭倦,為了吸引學生注意力,活躍課堂氣氛,拓寬學生思路,運用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。同學們一看,興趣來了。最后讓學生互相討論,就這樣讓學生在開放自由的情況下解決了該題,同時培養(yǎng)了學生的想像力。
最后介紹了勾股定理的.歷史,并且推薦了一些網(wǎng)站,讓學生下課之后進行查閱、了解。只是為了方便學生到更廣闊的知識海洋中去尋找知識寶藏,利用網(wǎng)絡檢索相關信息,充實、豐富、拓展課堂學習資源,提供各種學習方式,讓學生學會選擇、整理、重組、再用這些更廣泛的資源。這種對網(wǎng)絡資源的重新組織,使學生對知識的需求由窄到寬,有力的促進了自主學習。這樣學生不僅能在課堂上學習到知識,還讓他們有了怎樣學習知識的方法。這就達到了新課標新理念的預定目標。
數(shù)學有與其他學科不同的特點,自然科學常發(fā)生新理論代替舊理論的情形,但數(shù)學不會如此。數(shù)學學習是數(shù)學發(fā)展史的縮影,是一個累進過程。勾股定理是人類幾千年的文化遺產,是經典的定理,擁有科學簡潔的數(shù)學語言。而數(shù)學教學的核心不是知識本身,而是數(shù)學的思維方式。認識是個人獨特的構造結果,人的思維活動有強烈的個性特征。每個學生都有自己的生活背景、家庭環(huán)境,這種特定的文化氛圍,導致不同的學生有不同的思維方式和解決問題的策略。學生已有豐富的數(shù)學活動經驗,特別是運用數(shù)學解決問題的策略。學生只有用自己創(chuàng)造與體驗的方法來學習數(shù)學,才能真正地掌握數(shù)學。因而數(shù)學教學要展現(xiàn)數(shù)學的思維過程,要學生領會和實現(xiàn)數(shù)學化,自己去“發(fā)現(xiàn)”結果。這一課的學習就主要通過讓學生自主地探索知識,從而將其轉化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學習。這堂課將信息技術融入利于創(chuàng)設教學環(huán)境,教學模式將從以教師講授為主轉為以學生動腦動手自主研究、小組學習討論交流為主,把數(shù)學課堂轉為“數(shù)學實驗室”,學生通過自己的活動得出結論、使創(chuàng)新精神與實踐能力得到了發(fā)展。
八年級勾股定理教學反思6
勾股定理整章書的內容很少,就勾股定理和勾股定理的逆定理,這節(jié)課是勾股定理的第一課時,本節(jié)課主要是和學生一起探究勾股地理的認識。在教學的過程中感覺有幾個方面需要轉變的。
一 、轉變師生角色,讓學生自主學習。由于高效課堂中教學模式需要進行學生自主討論交流學習,在探究勾股定理的發(fā)現(xiàn)時分四人一小組由同學們合作探討作圖,去發(fā)現(xiàn)有的直角三角形的三邊具有這種關系,有的直角三角形不具有這種性質??扇匀蛔C明不了我們的猜想是否正確。之后用拼圖的方法再來驗證一下。讓學生們拿出準備好的直角三角形和正方形,利用拼圖和面積計算來證明 + = (學生分組討論。)學生展示拼圖方法,課件輔助演示。 新課標下要求教師個人素質越來越高,教師自身要不斷及時地學習學科專業(yè)知識,接受新信息,對自己及時充電、更新,而且要具有幽默藝術的語言表達能力。既要有領導者的組織指導能力,更重要的是要有被學生欣賞佩服的魅力,只有學生配合你,信任你,喜歡你,教師才能輕松駕御課堂,做到應付自如,高效率完成教學目標。 “教師教,學生聽,教師問,學生答,教室出題,學生做”的傳統(tǒng)教學摸模式,已嚴重阻阻礙了現(xiàn)代教育的發(fā)展。這種教育模式,不但無法培養(yǎng)學生的實踐能力,而且會造成機械的學習知識,形成懶惰、空洞的學習態(tài)度,形成數(shù)學的呆子,就像有的大學畢業(yè)生都不知道1平方米到底有多大?因此,高效課堂上要求老師一定要改變角色,把主動權交給學生,讓學生提出問題,動手操作,小組討論,合作交流,把學生想到的,想說的想法和認識都讓他們盡情地表達,然后教師再進行點評與引導,這樣做會有許多意外的收獲,而且能充分發(fā)揮挖掘每個學生的潛能,久而久之,學生的綜合能力就會與日劇增。
二、轉變教學方式,讓學生探索、研究、體會學習過程。 學生學會了數(shù)學知識,卻不會解決與之有關的實際問題,造成了知識學習和知識應用的脫節(jié),感受不到數(shù)學與生活的聯(lián)系,這是當今課堂教學存在的普遍問題,對于我們這兒的學生起點低、數(shù)學基礎差、實踐能力差,對學生的各種能力培養(yǎng)非常不利的。課堂中要特別關注:
1、關注學生是否積極參加探索勾股定理的活動,關注學生能否在活動中積思考,能夠探索出解決問題的方法,能否進行積極的聯(lián)想(數(shù)形結合)以及學生能否有條理的表達活動過程和所獲得的結論等;
2、關注學生的拼圖過程,鼓勵學生結合自己所拼得的正方形驗證勾股定理。
3、學習的知識性:掌握勾股定理,體會數(shù)形結合的思想。
三、提高教學科技含量,充分利用多媒體。 勾股定理知識屬于幾何內容,而幾何圖形可以直觀地表示出來,學生認識圖形的初級階段中主要依靠形象思維。對幾何圖形的認識始于觀察、測量、比較等直觀實驗手段,現(xiàn)代兒童認識幾何圖形亦如此,可以通過直觀實驗了解幾何圖形,發(fā)現(xiàn)其中的規(guī)律。然而,因為幾何圖形本身具有抽象性和一般性,一種幾何概念可能包含無限多種不同的`情形,例如有無數(shù)種形狀不同的三角形。對一種幾何概念所包含的一部分具體對象進行直觀實驗所得到的認識,一定適合其他情況驗回答不了的問題。因此,一般地,研究圖形的形狀、大小和位置。 培養(yǎng)邏輯推理能力,作了認真的考慮和精心的設計,把推理證明作為學生觀察、實驗、探究得出結論的自然延續(xù)。教科書的幾何部分,要先后經歷“說點兒理”“說理”“簡單推理”幾個層次,有意識地逐步強化關于推理的初步訓練,主要做法是在問題的分析中強調求解過程所依據(jù)的道理,體現(xiàn)事出有因、言之有據(jù)的思維習慣。 由于信息技術的發(fā)展與普及,直觀實驗手段在教學中日益增加,本節(jié)課利用我們學校建立了電教教室,通過制作課件對于幾何學的學習起到積極作用。
八年級勾股定理教學反思6篇 勾股定理復習課教學反思相關文章:
★ 數(shù)學《勾股定理》教學反思9篇 17.1勾股定理第一課時教學反思
★ 八年級語文教學反思范例10篇(四年級語文園地八課后反思)
★ 八年級優(yōu)秀地理教學反思3篇 初中八年級地理教學反思
★ 數(shù)學八年級的教學反思11篇(八年級數(shù)學教育教學反思)