亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

2023高中數(shù)學(xué)等差數(shù)列教案(必備6篇)

時(shí)間:2023-10-15 18:51:50 教案

2023高中數(shù)學(xué)等差數(shù)列教案 篇1

  等差數(shù)列的性質(zhì)總結(jié)

(一)等差數(shù)列的公式及性質(zhì)

  1.等差數(shù)列的定義: an?an?1?d(d為常數(shù))(n?2);

  2.等差數(shù)列通項(xiàng)公式:

  an?a1?(n?1)d?dn?a1?d(n?N*),首項(xiàng):a1,公差:d,末項(xiàng):an

  推廣: an?am?(n?m)d.從而d?

  3.等差中項(xiàng)

(1)如果a,A,b成等差數(shù)列,那么A叫做a與b的等差中項(xiàng).即:A?

(2)等差中項(xiàng):數(shù)列?an?是等差數(shù)列?2an?an-1?an?1(n?2)?2an?1?an?an?

  24.等差數(shù)列的判定方法

(1)定義法:若an?an?1?d或an?1?an?d(常數(shù)n?N)? ?an?是等差數(shù)列.?an?am; n?ma?b或2A?a?b 2

(2)等差中項(xiàng):數(shù)列?an?是等差數(shù)列?2an?an-1?an?1(n?2)?2an?1?an?an?2.

⑶數(shù)列?an?是等差數(shù)列?an?kn?b(其中k,b是常數(shù))。

(4)數(shù)列?an?是等差數(shù)列?Sn?An2?Bn,(其中A、B是常數(shù))。

  5.等差數(shù)列的證明方法

  定義法:若an?an?1?d或an?1?an?d(常數(shù)n?N)? ?an?是等差數(shù)列. ?

  6.提醒:

(1)等差數(shù)列的通項(xiàng)公式及前n和公式中,涉及到5個(gè)元素:a

  1、d、n、an及Sn,其中a

  1、d稱作為基本元素。只要已知這5個(gè)元素中的任意3個(gè),便可求出其余2個(gè),即知3求2。

(2)設(shè)項(xiàng)技巧:

①一般可設(shè)通項(xiàng)an?a1?(n?1)d

②奇數(shù)個(gè)數(shù)成等差,可設(shè)為?,a?2d,a?d,a,a?d,a?2d?(公差為d);

③偶數(shù)個(gè)數(shù)成等差,可設(shè)為?,a?3d,a?d,a?d,a?3d,?(注意;公差為2d)

  8..等差數(shù)列的性質(zhì):

(1)當(dāng)公差d?0時(shí),等差數(shù)列的通項(xiàng)公式an?a1?(n?1)d?dn?a1?d是關(guān)于n的一次函數(shù),且斜率為公差d;

  前n和Sn?na1?n(n?1)ddd?n2?(a1?)n是關(guān)于n的二次函數(shù)且常數(shù)項(xiàng)為

  2(2)若公差d?0,則為遞增等差數(shù)列,若公差d?0,則為遞減等差數(shù)列,若公差d?0,則為常數(shù)列。

(3)當(dāng)m?n?p?q時(shí),則有am?an?ap?aq,特別地,當(dāng)m?n?2p時(shí),則有am?an?2ap.注:a1?an?a2?an?1?a3?an?2????,(4)若?an?、?bn?為等差數(shù)列,則??an?b?,??1an??2bn?都為等差數(shù)列

(5)數(shù)列{an}為等差數(shù)列,每隔k(k?N)項(xiàng)取出一項(xiàng)(am,am?k,am?2k,am?3k,???)仍為等差數(shù)列 *

(二).等差數(shù)列的前n項(xiàng)和公式: (1)Sn?n(a1?an)n(n?1)d1?na1?d?n2?(a1?d)n?An2?Bn 222

  2(其中A、B是常數(shù),所以當(dāng)d≠0時(shí),Sn是關(guān)于n的二次式且常數(shù)項(xiàng)為0)

  特別地,當(dāng)項(xiàng)數(shù)為奇數(shù)2n?1時(shí),an?1是項(xiàng)數(shù)為2n+1的等差數(shù)列的中間項(xiàng)

  S2n?1??2n?1??a1?a2n?1??2?2n?1?an?1(項(xiàng)數(shù)為奇數(shù)的等差數(shù)列的各項(xiàng)和等于項(xiàng)數(shù)乘以中間項(xiàng))

(2)若{an}是等差數(shù)列,則Sn,S2n?Sn,S3n?S2n,?也成等差數(shù)列

(3)設(shè)數(shù)列?an?是等差數(shù)列,d為公差,S奇是奇數(shù)項(xiàng)的和,S偶是偶數(shù)項(xiàng)項(xiàng)的和,Sn是前n項(xiàng)的和

  1.當(dāng)項(xiàng)數(shù)為偶數(shù)2n時(shí),S奇?a1?a3?a5?????a2n?1?n?a1?a2n?1??nan

  2n?a2?a2n?S偶?a2?a4?a6?????a2n??nan?1 2

  S偶?S奇?nan?1?nan?n?an?1?an?=nd

  S奇nana??n S偶nan?1an?

  12、當(dāng)項(xiàng)數(shù)為奇數(shù)2n?1時(shí),則

?S奇n?1?S2n?1?S奇?S偶?(2n?1)an+1??S奇?(n?1)an+1 ?????S奇?S偶?an+1S偶n???S偶?nan+1?

(其中an+1是項(xiàng)數(shù)為2n+1的等差數(shù)列的中間項(xiàng)).

(4)?an?、{bn}的前n和分別為An、Bn,且

  則

(5)等差數(shù)列{an}的前n項(xiàng)和Sm?n,前m項(xiàng)和Sn?m,則前m+n項(xiàng)和Sm?n???m?n?

(6)求Sn的最值

  法一:因等差數(shù)列前n項(xiàng)和是關(guān)于n的二次函數(shù),故可轉(zhuǎn)化為求二次函數(shù)的最值,但要注意數(shù)列的特殊性An?f(n),nan(2n?1)anA2n?1???f(2n?1).nn2n?1n?N*。

  法二:(1)“首正”的遞減等差數(shù)列中,前n項(xiàng)和的最大值是所有非負(fù)項(xiàng)之和

?an?0即當(dāng)a1?0,d?0,由?可得Sn達(dá)到最大值時(shí)的n值. a?0?n?1

(2)“首負(fù)”的遞增等差數(shù)列中,前n項(xiàng)和的最小值是所有非正項(xiàng)之和。

  即 當(dāng)a1?0,d?0,由?

  或求?an?中正負(fù)分界項(xiàng) ?an?0可得Sn達(dá)到最小值時(shí)的n值. ?an?1?0

  法三:直接利用二次函數(shù)的對稱性:由于等差數(shù)列前n項(xiàng)和的圖像是過原點(diǎn)的二次函數(shù),故n取離二次函數(shù)對稱軸最近的整數(shù)時(shí),Sn取最大值(或最小值)。若S p = S q則其對稱軸為n?

  注意:解決等差數(shù)列問題時(shí),通??紤]兩類方法:

①基本量法:即運(yùn)用條件轉(zhuǎn)化為關(guān)于a1和d的方程;

②巧妙運(yùn)用等差數(shù)列的性質(zhì),一般地運(yùn)用性質(zhì)可以化繁為簡,減少運(yùn)算量.

  p?q 2

2023高中數(shù)學(xué)等差數(shù)列教案 篇2

  數(shù)列-數(shù)學(xué)教案

  教學(xué)目標(biāo)

  1.使學(xué)生理解數(shù)列的概念,了解數(shù)列通項(xiàng)公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項(xiàng).

(1)理解數(shù)列是按一定順序排成的一列數(shù),其每一項(xiàng)是由其項(xiàng)數(shù)唯一確定的.

(2)了解數(shù)列的各種表示方法,理解通項(xiàng)公式是數(shù)列第 項(xiàng) 與項(xiàng)數(shù) 的關(guān)系式,能根據(jù)通項(xiàng)公式寫出數(shù)列的前幾項(xiàng),并能根據(jù)給出的一個(gè)數(shù)列的前幾項(xiàng)寫出該數(shù)列的一個(gè)通項(xiàng)公式.

(3)已知一個(gè)數(shù)列的遞推公式及前若干項(xiàng),便確定了數(shù)列,能用代入法寫出數(shù)列的前幾項(xiàng).

  2.通過對一列數(shù)的觀察、歸納,寫出符合條件的一個(gè)通項(xiàng)公式,培養(yǎng)學(xué)生的觀察能力和抽象概括能力.

  3.通過由 求 的過程,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度及良好的思維習(xí)慣.

  教學(xué)建議

(1)為激發(fā)學(xué)生學(xué)習(xí)數(shù)列的興趣,體會數(shù)列知識在實(shí)際生活中的作用,可由實(shí)際問題引入,從中抽象出數(shù)列要研究的問題,使學(xué)生對所要研究的內(nèi)容心中有數(shù),如書中所給的例子,還有物品堆放個(gè)數(shù)的計(jì)算等.

(2)數(shù)列中蘊(yùn)含的函數(shù)思想是研究數(shù)列的指導(dǎo)思想,應(yīng)及早引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)列與函數(shù)的關(guān)系.在教學(xué)中強(qiáng)調(diào)數(shù)列的項(xiàng)是按一定順序排列的,“次序”便是函數(shù)的自變量,相同的數(shù)組成的數(shù)列,次序不同則就是不同的數(shù)列.函數(shù)表示法有列表法、圖象法、解析式法,類似地,數(shù)列就有列舉法、圖示法、通項(xiàng)公式法.由于數(shù)列的自變量為正整數(shù),于是就有可能相鄰的兩項(xiàng)(或幾項(xiàng))有關(guān)系,從而數(shù)列就有其特殊的表示法——遞推公式法.

(3)由數(shù)列的通項(xiàng)公式寫出數(shù)列的前幾項(xiàng)是簡單的代入法,教師應(yīng)精心設(shè)計(jì)例題,使這一例題為寫通項(xiàng)公式作一些準(zhǔn)備,尤其是對程度差的學(xué)生,應(yīng)多舉幾個(gè)例子,讓學(xué)生觀察歸納通項(xiàng)公式與各項(xiàng)的結(jié)構(gòu)關(guān)系,盡量為寫通項(xiàng)公式提供幫助.

(4)由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式使學(xué)生學(xué)習(xí)中的一個(gè)難點(diǎn),要幫助學(xué)生分析各項(xiàng)中的結(jié)構(gòu)特征(整式,分式,遞增,遞減,擺動等),由學(xué)生歸納一些規(guī)律性的結(jié)論,如正負(fù)相間用 來調(diào)整等.如果學(xué)生一時(shí)不能寫出通項(xiàng)公式,可讓學(xué)生依據(jù)前幾項(xiàng)的規(guī)律,猜想該數(shù)列的下一項(xiàng)或下幾項(xiàng)的值,以便尋求項(xiàng)與項(xiàng)數(shù)的關(guān)系.

(5)對每個(gè)數(shù)列都有求和問題,所以在本節(jié)課應(yīng)補(bǔ)充數(shù)列前 項(xiàng)和的概念,用 表示 的問題是重點(diǎn)問題,可先提出一個(gè)具體問題讓學(xué)生分析 與 的關(guān)系,再由特殊到一般,研究其一般規(guī)律,并給出嚴(yán)格的推理證明(強(qiáng)調(diào) 的表達(dá)式是分段的);之后再到特殊問題的解決,舉例時(shí)要兼顧結(jié)果可合并及不可合并的情況.

(6)給出一些簡單數(shù)列的通項(xiàng)公式,可以求其最大項(xiàng)或最小項(xiàng),又是函數(shù)思想與方法的體現(xiàn),對程度好的學(xué)生應(yīng)提出這一問題,學(xué)生運(yùn)用函數(shù)知識是可以解決的.

  教學(xué)設(shè)計(jì)示例

  數(shù)列的概念

  教學(xué)目標(biāo)

  1.通過教學(xué)使學(xué)生理解數(shù)列的概念,了解數(shù)列的表示法,能夠根據(jù)通項(xiàng)公式寫出數(shù)列的項(xiàng).

  2.通過數(shù)列定義的歸納概括,初步培養(yǎng)學(xué)生的觀察、抽象概括能力;滲透函數(shù)思想.

  3.通過有關(guān)數(shù)列實(shí)際應(yīng)用的介紹,激發(fā)學(xué)生學(xué)習(xí)研究數(shù)列的積極性.

  教學(xué)重點(diǎn),難點(diǎn)

  教學(xué)重點(diǎn)是數(shù)列的定義的歸納與認(rèn)識;教學(xué)難點(diǎn)是數(shù)列與函數(shù)的聯(lián)系與區(qū)別.

  教學(xué)用具:電腦,/>課件(媒體資料),投影儀,幻燈片

  教學(xué)方法:講授法為主

  教學(xué)過程

  一.揭示課題

  今天開始我們研究一個(gè)新課題.

  先舉一個(gè)生活中的例子:場地上堆放了一些圓鋼,最底下的一層有100根,在其上一層(稱作第二層)碼放了99根,第三層碼放了98根,依此類推,問:最多可放多少層?第57層有多少根?從第1層到第57層一共有多少根?我們不能滿足于一層層的去數(shù),而是要但求如何去研究,找出一般規(guī)律.實(shí)際上我們要研究的是這樣的一列數(shù)

(板書)象這樣排好隊(duì)的數(shù)就是我們的研究對象——數(shù)列.

(板書)第三章 數(shù)列

(一)數(shù)列的概念

  二.講解新課

  要研究數(shù)列先要知道何為數(shù)列,即先要給數(shù)列下定義,為幫助同學(xué)概括出數(shù)列的定義,再給出幾列數(shù):

(幻燈片)①

  自然數(shù)排成一列數(shù):

  3個(gè)1排成一列:

  無數(shù)個(gè)1排成一列:

④的不足近似值,分別近似到 排列起來:

  正整數(shù) 的倒數(shù)排成一列數(shù):

  函數(shù) 當(dāng) 依次取 時(shí)得到一列數(shù):

  函數(shù) 當(dāng) 依次取 時(shí)得到一列數(shù):

  請學(xué)生觀察8列數(shù),說明每列數(shù)就是一個(gè)數(shù)列,數(shù)列中的每個(gè)數(shù)都有自己的特定的位置,這樣數(shù)列就是按一定順序排成的一列數(shù).

(板書)1.?dāng)?shù)列的定義:按一定次序排成的一列數(shù)叫做數(shù)列.

  為表述方便給出幾個(gè)名稱:項(xiàng),項(xiàng)數(shù),首項(xiàng)(以幻燈片的形式給出).以上述八個(gè)數(shù)列為例,讓學(xué)生練指出某一個(gè)數(shù)列的首項(xiàng)是多少,第二項(xiàng)是多少,指出某一個(gè)數(shù)列的一些項(xiàng)的項(xiàng)數(shù).

  由此可以看出,給定一個(gè)數(shù)列,應(yīng)能夠指明第一項(xiàng)是多少,第二項(xiàng)是多少,??,每一項(xiàng)都是確定的,即指明項(xiàng)數(shù),對應(yīng)的項(xiàng)就確定.所以數(shù)列中的每一項(xiàng)與其項(xiàng)數(shù)有著對應(yīng)關(guān)系,這與我們學(xué)過的函數(shù)有密切關(guān)系.

(板書)2.?dāng)?shù)列與函數(shù)的關(guān)系

  數(shù)列可以看作特殊的函數(shù),項(xiàng)數(shù)是其自變量,項(xiàng)是項(xiàng)數(shù)所對應(yīng)的函數(shù)值,數(shù)列的定義域是正整數(shù)集,或是正整數(shù)集 的有限子集 .

  于是我們研究數(shù)列就可借用函數(shù)的研究方法,用函數(shù)的觀點(diǎn)看待數(shù)列.

  遇到數(shù)學(xué)概念不單要下定義,還要給其數(shù)學(xué)表示,以便研究與交流,下面探討數(shù)列的表示法.

(板書)3.?dāng)?shù)列的表示法

  數(shù)列可看作特殊的函數(shù),其表示也應(yīng)與函數(shù)的表示法有聯(lián)系,首先請學(xué)生回憶函數(shù)的表示法:列表法,圖象法,解析式法.相對于列表法表示一個(gè)函數(shù),數(shù)列有這樣的表示法:用 表示第一項(xiàng),用 表示第一項(xiàng),??,用 表示第 項(xiàng),依次寫出成為

(板書)(1)列舉法

.(如幻燈片上的例子)簡記為 .

  一個(gè)函數(shù)的直觀形式是其圖象,我們也可用圖形表示一個(gè)數(shù)列,把它稱作圖示法.

(板書)(2)圖示法

  啟發(fā)學(xué)生仿照函數(shù)圖象的畫法畫數(shù)列的圖形.具體方法是以項(xiàng)數(shù) 為橫坐標(biāo),相應(yīng)的項(xiàng) 為縱坐標(biāo),即以 為坐標(biāo)在平面直角坐標(biāo)系中做出點(diǎn)(以前面提到的數(shù)列 為例,做出一個(gè)數(shù)列的圖象),所得的數(shù)列的圖形是一群孤立的點(diǎn),因?yàn)闄M坐標(biāo)為正整數(shù),所以這些點(diǎn)都在 軸的右側(cè),而點(diǎn)的個(gè)數(shù)取決于數(shù)列的項(xiàng)數(shù).從圖象中可以直觀地看到數(shù)列的項(xiàng)隨項(xiàng)數(shù)由小到大變化而變化的趨勢.

  有些函數(shù)可以用解析式來表示,解析式反映了一個(gè)函數(shù)的函數(shù)值與自變量之間的數(shù)量關(guān)系,類似地有一些數(shù)列的項(xiàng)能用其項(xiàng)數(shù)的函數(shù)式表示出來,即,這個(gè)函數(shù)式叫做數(shù)列的通項(xiàng)公式.

(板書)(3)通項(xiàng)公式法

  如數(shù)列 的通項(xiàng)公式為 ;的通項(xiàng)公式為 ;的通項(xiàng)公式為 ;

  數(shù)列的通項(xiàng)公式具有雙重身份,它表示了數(shù)列的第 項(xiàng),又是這個(gè)數(shù)列中所有各項(xiàng)的一般表示.通項(xiàng)公式反映了一個(gè)數(shù)列項(xiàng)與項(xiàng)數(shù)的函數(shù)關(guān)系,給了數(shù)列的通項(xiàng)公式,這個(gè)數(shù)列便確定了,代入項(xiàng)數(shù)就可求出數(shù)列的每一項(xiàng).

2023高中數(shù)學(xué)等差數(shù)列教案 篇3

  本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)5》(北師大版)第一章數(shù)列第二節(jié)等差數(shù)列第一課時(shí).?dāng)?shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用.等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣.同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法.

  1. 知識與技能

(1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:

(2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過程:

(3)會應(yīng)用等差數(shù)列通項(xiàng)公式解決簡單問題。

  2.過程與方法

  在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

  3.情感、態(tài)度與價(jià)值觀

  通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

①等差數(shù)列的概念;②等差數(shù)列的通項(xiàng)公式

①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程.

  我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展.

  1.教法

①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進(jìn)行主動建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性.

②分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性.

③講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).

  2.學(xué)法

  引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對各種能力的同學(xué)引導(dǎo)認(rèn)識多元的推導(dǎo)思維方法.

【教學(xué)過程】

  一:創(chuàng)設(shè)情境,引入新課

  1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

  2.水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個(gè)水庫的水位為18,自然放水每天水位降低2.5,最低降至5.那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位(單位:)組成一個(gè)什么數(shù)列?

  3.我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息.按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?

  教師:以上三個(gè)問題中的數(shù)蘊(yùn)涵著三列數(shù).

  學(xué)生:

  1:0,5,10,15,20,25,….

  2:18,15.5,13,10.5,8,5.5.

  3:,.

(設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力.

  二:觀察歸納,形成定義

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③,.

  思考1上述數(shù)列有什么共同特點(diǎn)?

  思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?

  思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?

  教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

  學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

  教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義.

(設(shè)計(jì)意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點(diǎn);一開始抓?。骸皬牡诙?xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對等差數(shù)列概念的準(zhǔn)確表達(dá).)

  三:舉一反三,鞏固定義

  1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

  教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問題.

  注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0 .

(設(shè)計(jì)意圖:強(qiáng)化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用).

  2思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

(設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)

  四:利用定義,導(dǎo)出通項(xiàng)

  1.已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?

  2.已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?

  教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.

(設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點(diǎn)評,并及時(shí)肯定、贊揚(yáng)學(xué)生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識.鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)

  五:應(yīng)用通項(xiàng),解決問題

  1判斷100是不是等差數(shù)列2, 9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?

  2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

  3求等差數(shù)列 3,7,11,…的第4項(xiàng)和第10項(xiàng)

  教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

  學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式

(設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系.初步認(rèn)識“基本量法”求解等差數(shù)列問題.)

  六:反饋練習(xí):教材13頁練習(xí)1

  七:歸納總結(jié):

  1.一個(gè)定義:

  等差數(shù)列的定義及定義表達(dá)式

  2.一個(gè)公式:

  等差數(shù)列的通項(xiàng)公式

  3.二個(gè)應(yīng)用:

  定義和通項(xiàng)公式的應(yīng)用

  教師:讓學(xué)生思考整理,找?guī)讉€(gè)代表發(fā)言,最后教師給出補(bǔ)充

(設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識和掌握基本概念,并靈活運(yùn)用基本概念.)

  本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補(bǔ)充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動,提高課堂教學(xué)效率.

2023高中數(shù)學(xué)等差數(shù)列教案 篇4

教學(xué)目標(biāo):

(1)理解等差數(shù)列的概念,掌握等差數(shù)列的通項(xiàng)公式;

(2)利用等差數(shù)列的通項(xiàng)公式能由a1,d,n,an“知三求一”,了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想;

(3)通過作等差數(shù)列的圖像,進(jìn)一步滲透數(shù)形結(jié)合思想、函數(shù)思想;通過等差數(shù)列的通項(xiàng)公式應(yīng)用,滲透方程思想。

教學(xué)重、難點(diǎn):等差數(shù)列的定義及等差數(shù)列的通項(xiàng)公式。

知識結(jié)構(gòu):一般數(shù)列定義通項(xiàng)公式法

  遞推公式法

  等差數(shù)列表示法應(yīng)用

  圖示法

  性質(zhì)列舉法

教學(xué)過程:

(一)創(chuàng)設(shè)情境:

  1.觀察下列數(shù)列:

  1,2,3,4,……;(軍訓(xùn)時(shí)某排同學(xué)報(bào)數(shù))①

,9000,8000,7000,……;(溫州市房價(jià)平均每月每平方下跌的價(jià)位)②

  2,2,2,2,……;(坐38路公交車的車費(fèi))③

  問題:上述三個(gè)數(shù)列有什么共同特點(diǎn)?(學(xué)生會發(fā)現(xiàn)很多規(guī)律,如都是整數(shù),再舉幾個(gè)非整數(shù)等差數(shù)列例子讓學(xué)生觀察)

  規(guī)律:從第2項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都等于同一常數(shù)。

  引出等差數(shù)列。

(二)新課講解:

  1.等差數(shù)列定義:

  一般地,如果一個(gè)數(shù)列從第項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,公差通常用字母表示。

  問題:

(a)能否用數(shù)學(xué)符號語言描述等差數(shù)列的定義?

  用遞推公式表示為或.

(b)例1:觀察下列數(shù)列是否是等差數(shù)列:

(1)1,-1,1,-1,…

(2)1,2,4,6,8,10,…

  意在強(qiáng)調(diào)定義中“同一個(gè)常數(shù)”

(c)例2:求上述三個(gè)數(shù)列的公差;公差d可取哪些值?d>0,d=0,d<0時(shí),數(shù)列有什么特點(diǎn)(d有不同的分類,如按整數(shù)分?jǐn)?shù)分類,再舉幾個(gè)等差數(shù)列的例子觀察d的分類對數(shù)列的影響)

  說明:等差數(shù)列(通??煞Q為數(shù)列)的單調(diào)性:為遞增數(shù)列,為常數(shù)列,為遞減數(shù)列。

  例3:求等差數(shù)列13,8,3,-2,…的第5項(xiàng)。第89項(xiàng)呢?

  放手讓學(xué)生利用各種方法求a89,從中找出合適的方法,如利用不完全歸納法或累加法,然后引出求一般等差數(shù)列的通項(xiàng)公式。

  2.等差數(shù)列的通項(xiàng)公式:已知等差數(shù)列的首項(xiàng)是,公差是,求.

(1)由遞推公式利用用不完全歸納法得出

  由等差數(shù)列的定義:,……

∴,……

  所以,該等差數(shù)列的通項(xiàng)公式:.

(驗(yàn)證n=1時(shí)成立)。

  這種由特殊到一般的推導(dǎo)方法,不能代替嚴(yán)格證明。要用數(shù)學(xué)歸納法證明的。

(2)累加法求等差數(shù)列的通項(xiàng)公式

  讓學(xué)生體驗(yàn)推導(dǎo)過程。(驗(yàn)證n=1時(shí)成立)

  3.例題及練習(xí):

  應(yīng)用等差數(shù)列的通項(xiàng)公式

  追問:(1)-232是否為例3等差數(shù)列中的項(xiàng)?若是,是第幾項(xiàng)?

(2)此數(shù)列中有多少項(xiàng)屬于區(qū)間[-100,0]?

  法一:求出a1,d,借助等差數(shù)列的通項(xiàng)公式求a20。

  法二:求出d,a20=a5+15d=a12+8d

  在例4基礎(chǔ)上,啟發(fā)學(xué)生猜想證明

  練習(xí):

  梯子的最高一級寬31cm,最低一級寬119cm,中間還有3級,各級的寬度成等差數(shù)列,請計(jì)算中間各級的寬度。

  觀察圖像特征。

  思考:an是關(guān)于n的一次式,是數(shù)列{an}為等差數(shù)列的什么條件?

  課后反思:這節(jié)課的重點(diǎn)是等差數(shù)列定義和通項(xiàng)公式概念的理解,而不是公式的應(yīng)用,有些應(yīng)試教育的味道。有時(shí)搶學(xué)生的回答,沒有真正放手讓學(xué)生的思維發(fā)展,學(xué)生活動太少,課堂氛圍不好。學(xué)生對問題的反應(yīng)出乎設(shè)計(jì)的意料時(shí),應(yīng)該順著學(xué)生的思維發(fā)展。

2023高中數(shù)學(xué)等差數(shù)列教案 篇5

[教學(xué)目標(biāo)]

  1、知識與技能目標(biāo):掌握等差數(shù)列的概念;理解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項(xiàng)公式解決相應(yīng)的一些問題。

  2、過程與方法目標(biāo):讓學(xué)生親身經(jīng)歷“從特殊入手,研究對象的性質(zhì),再逐步擴(kuò)大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過階梯性的強(qiáng)化練習(xí),培養(yǎng)學(xué)生分析問題解決問題的能力。

  3、情感態(tài)度與價(jià)值觀目標(biāo):通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生逐步養(yǎng)成細(xì)心觀察、認(rèn)真分析、及時(shí)總結(jié)的好習(xí)慣。

[教學(xué)重難點(diǎn)]

  1、教學(xué)重點(diǎn):等差數(shù)列的概念的理解,通項(xiàng)公式的推導(dǎo)及應(yīng)用。

  2、教學(xué)難點(diǎn):

(1)對等差數(shù)列中“等差”兩字的把握;

(2)等差數(shù)列通項(xiàng)公式的推導(dǎo)。

[教學(xué)過程]

  一。課題引入

  創(chuàng)設(shè)情境引入課題:(這節(jié)課我們將學(xué)習(xí)一類特殊的數(shù)列,下面我們看這樣一些例子)

  二、新課探究

(一)等差數(shù)列的定義

  1、等差數(shù)列的定義

  如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫等差數(shù)列。這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。

(1)定義中的關(guān)健詞有哪些?

(2)公差d是哪兩個(gè)數(shù)的差?

(二)等差數(shù)列的通項(xiàng)公式

  探究1:等差數(shù)列的通項(xiàng)公式(求法一)

  如果等差數(shù)列首項(xiàng)是,公差是,那么這個(gè)等差數(shù)列如何表示?呢?

  根據(jù)等差數(shù)列的定義可得:

  因此等差數(shù)列的通項(xiàng)公式就是:,

  探究2:等差數(shù)列的通項(xiàng)公式(求法二)

  根據(jù)等差數(shù)列的定義可得:

  將以上-1個(gè)式子相加得等差數(shù)列的通項(xiàng)公式就是:,

  三、應(yīng)用與探索

  例1、(1)求等差數(shù)列8,5,2,…,的第20項(xiàng)。

(2)等差數(shù)列-5,-9,-13,…,的第幾項(xiàng)是–401?

(2)、分析:要判斷-401是不是數(shù)列的項(xiàng),關(guān)鍵是求出通項(xiàng)公式,并判斷是否存在正整數(shù)n,使得成立,實(shí)質(zhì)上是要求方程的正整數(shù)解。

  例2、在等差數(shù)列中,已知=10,=31,求首項(xiàng)與公差d.

  解:由,得。

  在應(yīng)用等差數(shù)列的通項(xiàng)公式an=a1+(n-1)d過程中,對an,a1,n,d這四個(gè)變量,知道其中三個(gè)量就可以求余下的一個(gè)量,這是一種方程的思想。

  鞏固練習(xí)

  1、等差數(shù)列{an}的前三項(xiàng)依次為a-6,-3a-5,-10a-1,則a=()。

  2、一張?zhí)葑幼罡咭患墝?3cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。求公差d。

  四、小結(jié)

  1、等差數(shù)列的通項(xiàng)公式:

  公差;

  2、等差數(shù)列的計(jì)算問題,通常知道其中三個(gè)量就可以利用通項(xiàng)公式an=a1+(n-1)d,求余下的一個(gè)量;

  3、判斷一個(gè)數(shù)列是否為等差數(shù)列只需看是否為常數(shù)即可;

  4、利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學(xué)系規(guī)律或解決數(shù)學(xué)問題。

  五、作業(yè):

  1、必做題:課本第40頁習(xí)題第1,3,5題

  2、選做題:如何以最快的速度求:1+2+3+???+100=

.1等差數(shù)列學(xué)案

2023高中數(shù)學(xué)等差數(shù)列教案 篇6

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

  掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識解決一些基本問題。

教學(xué)重難點(diǎn)

  掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識解決一些基本問題。

教學(xué)過程

  等比數(shù)列性質(zhì)請同學(xué)們類比得出。

【方法規(guī)律】

  1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量,“知三求二”是一類最基本的運(yùn)算題。方程觀點(diǎn)是解決這類問題的基本數(shù)學(xué)思想和方法。

  2、判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義。特別地,在判斷三個(gè)實(shí)數(shù)

  a,b,c成等差(比)數(shù)列時(shí),常用(注:若為等比數(shù)列,則a,b,c均不為0)

  3、在求等差數(shù)列前n項(xiàng)和的(小)值時(shí),常用函數(shù)的思想和方法加以解決。

【示范舉例】

  例1:(1)設(shè)等差數(shù)列的前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為。

(2)一個(gè)等比數(shù)列的前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1=,q=.

  例2:四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)。

  例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng)。

2023高中數(shù)學(xué)等差數(shù)列教案(必備6篇)相關(guān)文章: