亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

《平面向量》說(shuō)課稿9篇 平面向量基本定理說(shuō)課稿人教b版

時(shí)間:2023-10-17 19:51:00 說(shuō)課稿

  下面是范文網(wǎng)小編收集的《平面向量》說(shuō)課稿9篇 平面向量基本定理說(shuō)課稿人教b版,供大家閱讀。

《平面向量》說(shuō)課稿9篇 平面向量基本定理說(shuō)課稿人教b版

《平面向量》說(shuō)課稿1

  各位老師好:

  我是戶縣二中的李敏,今天講的課題是《平面向量的坐標(biāo)的表示》,本節(jié)課是高中數(shù)學(xué)北師大版必修4第二章第4節(jié)的內(nèi)容,下面我將從四個(gè)方面對(duì)本節(jié)課的教學(xué)設(shè)計(jì)來(lái)加以說(shuō)明。

  一、學(xué)情分析

  本節(jié)課是在學(xué)生已學(xué)知識(shí)的基礎(chǔ)上進(jìn)行展開(kāi)學(xué)習(xí)的,也是對(duì)以前所學(xué)知識(shí)的鞏固和發(fā)展,但對(duì)學(xué)生的知識(shí)準(zhǔn)備情況來(lái)看,學(xué)生對(duì)相關(guān)基礎(chǔ)知識(shí)掌握情況是很好,所以在復(fù)習(xí)時(shí)要及時(shí)對(duì)學(xué)生相關(guān)知識(shí)進(jìn)行提問(wèn),然后開(kāi)展對(duì)本節(jié)課的鞏固性復(fù)習(xí)。而本節(jié)課學(xué)生會(huì)遇到的困難有:數(shù)軸、坐標(biāo)的表示;平面向量的坐標(biāo)表示;平面向量的坐標(biāo)運(yùn)算。

  二、高考的考點(diǎn)分析:

  在歷年高考試題中,平面向量占有重要地位,近幾年更是有所加強(qiáng)。這些試題不僅平面向量的相關(guān)概念等基本知識(shí),而且??计矫嫦蛄康倪\(yùn)算;平面向量共線的條件;用坐標(biāo)表示兩個(gè)向量的夾角等知識(shí)的解題技能??疾閷W(xué)生在數(shù)學(xué)學(xué)習(xí)和研究過(guò)程中知識(shí)的遷移、融會(huì),進(jìn)而考查學(xué)生的學(xué)習(xí)潛能和數(shù)學(xué)素養(yǎng),為考生展現(xiàn)其創(chuàng)新意識(shí)和發(fā)揮創(chuàng)造能力提高廣闊的空間,相關(guān)題型經(jīng)常在高考試卷里出現(xiàn),而且經(jīng)常以選擇、填空、解答題的形式出現(xiàn)。

  三、復(fù)習(xí)目標(biāo)

  1.會(huì)用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運(yùn)算.

  2.理解用坐標(biāo)表示的平面向量共線的條件.

  3.掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量數(shù)量積的運(yùn)算.

  4.能用坐標(biāo)表示兩個(gè)向量的`夾角,理解用坐標(biāo)表示的平面向量垂直的條件.

  教學(xué)重難點(diǎn)的確定與突破:

  根據(jù)《20xx高考大綱》和對(duì)近幾年高考試題的分析,我確定本節(jié)的教學(xué)重點(diǎn)為:平面向量的坐標(biāo)表示及運(yùn)算。難點(diǎn)為:平面向量坐標(biāo)運(yùn)算與表示的理解。我將引導(dǎo)學(xué)生通過(guò)復(fù)習(xí)指導(dǎo),歸納概念與運(yùn)算規(guī)律,模仿例題解決習(xí)題等過(guò)程來(lái)達(dá)到突破重難點(diǎn)。

  四、說(shuō)教法

  根據(jù)本節(jié)課是復(fù)習(xí)課,我采用了“自學(xué)、指導(dǎo)、練習(xí)”的教學(xué)方法,即通過(guò)對(duì)知識(shí)點(diǎn)、考點(diǎn)的復(fù)習(xí),圍繞教學(xué)目標(biāo)和重難點(diǎn)提出一系列精心設(shè)計(jì)的問(wèn)題,在教師的指導(dǎo)下,用做題來(lái)復(fù)習(xí)和鞏固舊知識(shí)點(diǎn)。

  五、說(shuō)學(xué)法

  根據(jù)平時(shí)作業(yè)中的問(wèn)題來(lái)看,學(xué)生會(huì)本節(jié)課遇到的困難有:數(shù)軸、坐標(biāo)的表示;平面向量的坐標(biāo)表示;平面向量的坐標(biāo)運(yùn)算等方面。根據(jù)學(xué)情,所以我將指導(dǎo)通過(guò)“自學(xué),探究,模仿”等過(guò)程完成本節(jié)課的學(xué)習(xí)。

  六、說(shuō)過(guò)程

  (一) 知識(shí)梳理:

  1.向量坐標(biāo)的求法

  (1)若向量的起點(diǎn)是坐標(biāo)原點(diǎn),則終點(diǎn)坐標(biāo)即為向量的坐標(biāo).

  (2)設(shè)A(x1,y1),B(x2,y2),則

  =_________________

  ||=_______________

 ?。ǘ┢矫嫦蛄孔鴺?biāo)運(yùn)算

  1.向量加法、減法、數(shù)乘向量

  設(shè) =(x1,y1), =(x2,y2),則

  + = - = λ = .

  2.向量平行的坐標(biāo)表示

  設(shè) =(x1,y1), =(x2,y2),則 ∥ ________________.

 ?。ㄈ┖诵目键c(diǎn)習(xí)題演練

  考點(diǎn)1.平面向量的坐標(biāo)運(yùn)算

  例1.已知A(-2,4),B(3,-1),C(-3,-4).設(shè) (1)求3 + -3 ;

  (2)求滿足 =m +n 的實(shí)數(shù)m,n;

  練:(20xx江蘇,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)

  (m,n∈R),則m-n的值為 .

  考點(diǎn)2平面向量共線的坐標(biāo)表示

  例2:平面內(nèi)給定三個(gè)向量 =(3,2), =(-1,2), =(4,1)

  若( +k )∥(2 - ),求實(shí)數(shù)k的值;

  練:(20xx,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ為實(shí)數(shù),( +λ )∥ ,則λ= ( )

  思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?

  考點(diǎn)3平面向量數(shù)量積的坐標(biāo)運(yùn)算

  例3“已知正方形ABCD的邊長(zhǎng)為1,點(diǎn)E是AB邊上的動(dòng)點(diǎn),

  則的值為 ; 的最大值為 .

  【提示】解決涉及幾何圖形的向量數(shù)量積運(yùn)算問(wèn)題時(shí),可建立直角坐標(biāo)系利用向量的數(shù)量積的坐標(biāo)表示來(lái)運(yùn)算,這樣可以使數(shù)量積的運(yùn)算變得簡(jiǎn)捷.

  練:(20xx,安徽,13)設(shè) =(1,2), =(1,1), = +k .若 ⊥ ,則實(shí)數(shù)k的值等于( )

  【思考】?jī)煞橇阆蛄?⊥ 的充要條件: =0 .

  考點(diǎn)4:平面向量模的坐標(biāo)表示

  例4:(20xx湖南,理8)已知點(diǎn)A,B,C在圓x2+y2=1上運(yùn)動(dòng),且AB⊥BC,若點(diǎn)P的坐標(biāo)為(2,0),則的最大值為( )

  A.6 B.7 C.8 D.9

  練:(20xx,上海,12)

  在平面直角坐標(biāo)系中,已知A(1,0),B(0,-1),P是曲線上一個(gè)動(dòng)點(diǎn),則 的取值范圍是?

《平面向量》說(shuō)課稿2

尊敬的各位專家、評(píng)委:

  上午好!

  今天我說(shuō)課的課題是人教A版必修4第二章第三節(jié)《平面向量的基本定理及其坐標(biāo)表示》。

  我嘗試?yán)眯抡n標(biāo)的理念來(lái)指導(dǎo)教學(xué),對(duì)于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標(biāo)分析、教法學(xué)法分析、教學(xué)過(guò)程分析和評(píng)價(jià)分析五個(gè)方面來(lái)談?wù)勎覍?duì)教材的理解和教學(xué)的設(shè)計(jì),敬請(qǐng)各位專家、評(píng)委批評(píng)指正。

  一、教材分析

  教材的地位和作用

  1、向量在數(shù)學(xué)中的地位

  向量在近代數(shù)學(xué)中重要和基本的數(shù)學(xué)概念,是溝通代數(shù),幾何與三角函數(shù)的一種工具,它有著極其豐富的實(shí)際背景,又有著廣泛的實(shí)際應(yīng)用,具有很高的教育價(jià)值。

  2、本節(jié)在全章的地位

  平面向量基本定理揭示了平面向量的基本關(guān)系和基本結(jié)構(gòu),足以進(jìn)一步研究向量問(wèn)題的基礎(chǔ),是進(jìn)行向量運(yùn)算的基本工具,是解決向量或利用向量解決問(wèn)題的基本手段。

  3、平面向量基本定理具有十分廣闊的應(yīng)用空間

  平面向量基本定理蘊(yùn)含一種十分重要的數(shù)學(xué)思想——轉(zhuǎn)化思想。

  二、目標(biāo)分析

 ?。ㄒ唬?、教學(xué)目標(biāo)

  1、知識(shí)與技能目標(biāo)

  了解平面向量基本定理的條件和結(jié)論,會(huì)用它來(lái)表示平面上的任意向量,為向量坐標(biāo)化打下基礎(chǔ)。

  2、過(guò)程與方法目標(biāo)

  通過(guò)對(duì)平面向量基本定理的學(xué)習(xí)過(guò)程。讓學(xué)生體驗(yàn)數(shù)學(xué)定理的產(chǎn)生,形成過(guò)程,體驗(yàn)定理所蘊(yùn)含的數(shù)學(xué)思想方法。

  3、情感,態(tài)度和價(jià)值觀目標(biāo)

  通過(guò)對(duì)平面向量基本定理的運(yùn)用,增強(qiáng)學(xué)生向量的應(yīng)用意識(shí),讓學(xué)生進(jìn)一步體會(huì)向量是處理幾何問(wèn)題有力的工具之一。

 ?。ǘ?、教學(xué)的重點(diǎn)和難點(diǎn)

  1、重點(diǎn):對(duì)平面向量定理夫人探究

  2、難點(diǎn):對(duì)平面向量基本定理的理解及運(yùn)用

  三、教法、學(xué)法分析

  (一)、教法

  在教法上采取三主教學(xué)法:教師主導(dǎo),學(xué)生主體,思維主線

  1、教學(xué)手段

  使用多媒體輔助教學(xué),使書(shū)本的圖形動(dòng)起來(lái),加強(qiáng)了教學(xué)的主觀性

  2、學(xué)情分析

  前幾節(jié)課已經(jīng)學(xué)習(xí)了向量的基本概念和基本運(yùn)算,學(xué)生對(duì)向量的物理背景有了初步的了解,都為學(xué)習(xí)這節(jié)課做了充分的準(zhǔn)備。

 ?。ǘW(xué)法

  教師通過(guò)啟發(fā),激勵(lì)來(lái)體現(xiàn)教師的主導(dǎo)作用,引導(dǎo)學(xué)生全員,全過(guò)程參與。

  四、教學(xué)過(guò)程分析

 ?。ㄒ唬┙虒W(xué)過(guò)程設(shè)計(jì)

  創(chuàng)設(shè)情境,提出問(wèn)題

  數(shù)形幾何,探究規(guī)律

  揭示內(nèi)涵,理解定理

  例題練習(xí),變式演練

  歸納小結(jié),深化認(rèn)知

  布置作業(yè),鞏固提高

  1、創(chuàng)設(shè)情境,提出問(wèn)題

  如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,a是這一平面內(nèi)的任意向量,那么a與e1,e2之間有什么關(guān)系呢?怎探求這種關(guān)系呢?

  2、數(shù)形幾何,探究規(guī)律

  平面向量基本定理

  如果e1,e2是同一平面內(nèi)兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量,a,存在一對(duì)實(shí)數(shù)R1,R2使得a=R1e1+R2e2

  3、揭示內(nèi)涵,理解定理

  (1)、為什么基底e1,e2必須不共線?

 ?。?)、基底e1,e2是否可以選擇?

  (3)、定理中R1,R2的值是否唯一?

 ?。?)、定理的價(jià)值何在?

  4、例題練習(xí),變式演練

  如圖4,在□ABCD中,AB=a,AD=b

  試用a,b分別表示AC,BD

  如圖5,如果E,F(xiàn)分別是BC,DC的中點(diǎn),試用a,b分別表示BF,DE

  如圖6,如果O是AC,BD的交點(diǎn),G是DO的中點(diǎn),試用a,b表示AG

  5、小結(jié)歸納,回顧反思。

  小結(jié)歸納不僅是對(duì)知識(shí)的簡(jiǎn)單回顧,還要發(fā)揮學(xué)生的主體地位,從知識(shí)、方法、經(jīng)驗(yàn)等方面進(jìn)行總結(jié)。

 ?。?)、課堂小結(jié)

 ?、佟⑾蛄康淖鴺?biāo)表示

  a、對(duì)于向量a=(x,y)的'理解

  a=xe1+ye2(e1,e2分別是x軸,y軸正方向上的單位向量);

  若向量a的起點(diǎn)是原點(diǎn),則(x,y)就是其終點(diǎn)的坐標(biāo)。

  b、向量AB的坐標(biāo)

  一個(gè)向量的坐標(biāo)等于表示此向量的有向線段的終點(diǎn)的坐標(biāo)減去起點(diǎn)的坐標(biāo)。即如果A(x1,y1),B(x2,y2),則有AB=(x2—x1,y2—y1)。

  c、注意要把點(diǎn)的坐標(biāo)與向量的坐標(biāo)區(qū)別開(kāi)來(lái)。相等的向量坐標(biāo)是相同的,單起點(diǎn)和終點(diǎn)的坐標(biāo)卻可以不同。

 ?、?、平面向量共線的坐標(biāo)表示

  a、a=(x1,y1),b=(x2,y2),其中(b≠0),a//b的充要條件a=與x1y2—x2y1=0在本質(zhì)上市相同的,只是形式上的差異。

  b、要記準(zhǔn)公式坐標(biāo)特點(diǎn),不要用錯(cuò)公式。

  c、三點(diǎn)共線的判斷方法

  判斷三點(diǎn)是否共線,先求每?jī)牲c(diǎn)對(duì)應(yīng)的向量,然后再按兩向量共線進(jìn)行判斷。

 ?。?)、反思

  我設(shè)計(jì)了三個(gè)問(wèn)題

  ①、通過(guò)本節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識(shí)?

 ?、凇⑼ㄟ^(guò)本節(jié)課的學(xué)習(xí),你最大的體驗(yàn)是什么?

 ?、?、通過(guò)本節(jié)課的學(xué)習(xí),你掌握了哪些技能?

 ?。ǘ⒆鳂I(yè)設(shè)計(jì)

  作業(yè)分為必做題和選做題,必做題是對(duì)本節(jié)課學(xué)生知識(shí)水平的反饋,選做題是對(duì)本節(jié)課內(nèi)容的延伸與連貫,強(qiáng)調(diào)學(xué)以致用。通過(guò)作業(yè)設(shè)置,使不同層次的學(xué)生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學(xué)生飽滿的學(xué)習(xí)興趣,促進(jìn)學(xué)生的自主發(fā)展、合作探究的學(xué)習(xí)氛圍的形成。

  我設(shè)計(jì)了以下作業(yè):

  必做題:課本97頁(yè)第二題,98頁(yè)第六題

  ——鞏固作業(yè)的設(shè)計(jì)是保證了全體學(xué)生對(duì)平面向量基本定理的鞏固應(yīng)用。

  選做題:用向量法證明三角形的中位線平行于第三邊切等于第三邊的一半

  ——?jiǎng)?chuàng)新作業(yè)的設(shè)計(jì),體現(xiàn)了向量的工具性,使得學(xué)生對(duì)于用向量的方法證明幾何命題有了初步的體驗(yàn)。

 ?。ㄈ?、板書(shū)設(shè)計(jì)

  板書(shū)要基本體現(xiàn)課堂的內(nèi)容和方法,體現(xiàn)課堂進(jìn)程,能簡(jiǎn)明扼要反映知識(shí)結(jié)構(gòu)及其相互關(guān)系:能指導(dǎo)教師的教學(xué)進(jìn)程、引導(dǎo)學(xué)生探索知識(shí);通過(guò)使用幻燈片輔助板書(shū),節(jié)省課堂時(shí)間,使課堂進(jìn)程更加連貫。

  五、評(píng)價(jià)分析

  學(xué)生學(xué)習(xí)的結(jié)果評(píng)價(jià)固然重要,但是更重要的是學(xué)生學(xué)習(xí)的過(guò)程評(píng)價(jià)。我采用了及時(shí)點(diǎn)評(píng)、延時(shí)點(diǎn)評(píng)與學(xué)生互評(píng)相結(jié)合,全面考查學(xué)生在知識(shí)、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過(guò)程中,評(píng)價(jià)學(xué)生是否有積極的情感態(tài)度和頑強(qiáng)的理性精神,在概念反思過(guò)程中評(píng)價(jià)學(xué)生的歸納猜想能力是否得到發(fā)展,通過(guò)鞏固練習(xí)考查學(xué)生對(duì)本節(jié)是否有一個(gè)完整的集訓(xùn),并進(jìn)行及時(shí)的調(diào)整和補(bǔ)充。

  以上就是我對(duì)本節(jié)課的理解和設(shè)計(jì),敬請(qǐng)各位專家、評(píng)委批評(píng)指正。

  謝謝!

《平面向量》說(shuō)課稿3

  1、教材與學(xué)情分析

  “平面向量的應(yīng)用”這節(jié)教材在二期課改課本第10章最后一節(jié)10.6,屬于拓展內(nèi)容。教材選取5個(gè)例題說(shuō)明向量作為工具在數(shù)學(xué)、物理中的廣泛應(yīng)用性,其中例1和例2說(shuō)明向量在平面幾何中的應(yīng)用,例3(柯西不等式的證明)說(shuō)明向量在代數(shù)中的應(yīng)用,例4和例5說(shuō)明向量在力學(xué)中的應(yīng)用。已學(xué)完“力學(xué)”的高二學(xué)生對(duì)向量在力學(xué)中的應(yīng)用并不陌生,聯(lián)想向量相等、平行向量的關(guān)系、垂直向量的關(guān)系等解決平面幾何問(wèn)題讓學(xué)生感到也較自然,因?yàn)檫@是形——形的轉(zhuǎn)化、很直觀,而且涉及的向量知識(shí)也較容易,學(xué)生掌握得也好。而聯(lián)想向量模的意義、“兩向量和與差的模與向量模的和與差的不等關(guān)系”、“數(shù)量積的平方小于或等于模的平方的積”、將“向量加法的多邊形法則”轉(zhuǎn)化為“有關(guān)坐標(biāo)的等式”等解決函數(shù)最值、不等式和等式證明、三角求值等問(wèn)題讓學(xué)生感到比較困難,其原因之一是以上的知識(shí)掌握和理解有一定的難度,二是聯(lián)想構(gòu)造“數(shù)——形——數(shù)”轉(zhuǎn)化的要求高、綜合性強(qiáng)、較抽象,三是教學(xué)中能力培養(yǎng)不到位,因此在“平面向量在代數(shù)中的應(yīng)用”的教學(xué)中能力培養(yǎng)是關(guān)鍵。

  本課是在學(xué)生已經(jīng)學(xué)習(xí)“向量在平面幾何中的應(yīng)用”基礎(chǔ)上,學(xué)習(xí)“向量在代數(shù)中的應(yīng)用”。圍繞以上向量的概念和運(yùn)算性質(zhì)的應(yīng)用精心問(wèn)題,引導(dǎo)學(xué)生觀察、分析表達(dá)式的特征,聯(lián)想向量知識(shí),通過(guò)構(gòu)造向量將已知條件或結(jié)論轉(zhuǎn)化為向量表達(dá)、進(jìn)行向量運(yùn)算或向量性質(zhì)的應(yīng)用將所得的結(jié)果轉(zhuǎn)化為所求結(jié)論的過(guò)程,學(xué)生會(huì)對(duì)數(shù)學(xué)思想方法中的“數(shù)形結(jié)合”、“轉(zhuǎn)化”等有更深刻的理解;通過(guò)變式教學(xué)、特殊與一般的研究,感受數(shù)學(xué)發(fā)現(xiàn)的樂(lè)趣;通過(guò)錯(cuò)誤辨析、一題多解、一題多變的探究,夯實(shí)學(xué)生基礎(chǔ),達(dá)到深刻理解向量的概念,熟練掌握向量的運(yùn)

  算和性質(zhì)的目的,因而本節(jié)課的教學(xué)有助于學(xué)生能力的提高。

  本課的教學(xué)對(duì)象為松江二中高二學(xué)生,他們已較好地理解了向量的概念,比較熟練地掌握向量的運(yùn)算和性質(zhì),并能進(jìn)行簡(jiǎn)單應(yīng)用,有“數(shù)形結(jié)合”的應(yīng)用意識(shí),善于思考和發(fā)現(xiàn),有較高的認(rèn)知水平。因此,有可能也有必要引導(dǎo)他們進(jìn)行問(wèn)題探究。關(guān)于“數(shù)形結(jié)合”的思想應(yīng)用,來(lái)源于兩個(gè)方面,一是已體會(huì)到向量本身就是一個(gè)數(shù)形結(jié)合的產(chǎn)物,它兼具代數(shù)的抽象、嚴(yán)謹(jǐn)和幾何的直觀特點(diǎn),二是通過(guò)基本函數(shù)的圖象與性質(zhì)的學(xué)習(xí),體會(huì)到應(yīng)用“數(shù)形結(jié)合”研究函數(shù)性質(zhì)、解決函數(shù)的零點(diǎn)、方程和不等式的解等問(wèn)題。正如美國(guó)數(shù)學(xué)家斯蒂恩說(shuō):“如果一個(gè)特定的問(wèn)題可以轉(zhuǎn)化為一個(gè)圖形,那么思想就整體地把握了問(wèn)題,并能創(chuàng)造性思索問(wèn)題的解法”。所以本節(jié)課以“向量在代數(shù)中的應(yīng)用”為載體,進(jìn)一步讓學(xué)生體驗(yàn)“數(shù)形結(jié)合”、“轉(zhuǎn)化”的思想應(yīng)用為目標(biāo),培養(yǎng)學(xué)生的探究精神為歸宿,促進(jìn)學(xué)生思維能力的提高。

  2、教學(xué)目標(biāo)

  2.1學(xué)生通過(guò)問(wèn)題探究,深刻理解向量的概念,熟練掌握向量的運(yùn)算和性質(zhì),并能著意聯(lián)想恰當(dāng)應(yīng)用,解決有關(guān)代數(shù)問(wèn)題;

  2.2學(xué)生通過(guò)一題多解、一題多變的研究,揭示向量在代數(shù)問(wèn)題中的應(yīng)用本質(zhì),體驗(yàn)數(shù)形結(jié)合思想及特殊與一般關(guān)系的應(yīng)用,感受數(shù)學(xué)發(fā)現(xiàn)的樂(lè)趣,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。

  3、教學(xué)重點(diǎn)、難點(diǎn)、注意點(diǎn)

  本課重點(diǎn)是加深向量概念、向量的運(yùn)算和性質(zhì)的理解,并應(yīng)用數(shù)形結(jié)合與轉(zhuǎn)化思想解決有關(guān)代數(shù)問(wèn)題;難點(diǎn)是如何數(shù)形轉(zhuǎn)化和有關(guān)向量模的不等式等號(hào)成立的本質(zhì)理解;注意點(diǎn)要求學(xué)生規(guī)范表達(dá)數(shù)形結(jié)合解題的步驟。

  重點(diǎn)突破:以問(wèn)題為出發(fā)點(diǎn),觀察、分析、展開(kāi)聯(lián)想,實(shí)踐探索,展示學(xué)生在討論、回答過(guò)程中的思維活動(dòng),體會(huì)問(wèn)題本質(zhì)。難點(diǎn)突破:復(fù)習(xí)回顧有關(guān)“向量實(shí)數(shù)化”的特征,如模、數(shù)量積、坐標(biāo)的表示等,通過(guò)問(wèn)題銜接設(shè)計(jì),鋪墊暗示,一題多解、一題多變、錯(cuò)題辨析、幾何畫(huà)板的應(yīng)用等達(dá)到突破難點(diǎn)目的。

  4、教學(xué)方法與教學(xué)手段

  4.1充分體現(xiàn)“以學(xué)生為主體,教師為主導(dǎo)”的原則

  注重問(wèn)題設(shè)計(jì),體現(xiàn)教師的導(dǎo)向功能,展示學(xué)生是展開(kāi)聯(lián)想的主體;

  重視實(shí)踐探索,體現(xiàn)教師的導(dǎo)律功能,展示學(xué)生是揭示規(guī)律的主體

  應(yīng)用媒體實(shí)驗(yàn),體現(xiàn)教師的導(dǎo)標(biāo)功能,展示學(xué)生是體驗(yàn)演示的主體

  4.2采取教師指導(dǎo)下的學(xué)生實(shí)踐、探索的模式,把問(wèn)題作為教學(xué)的出發(fā)點(diǎn),指導(dǎo)嘗試,總結(jié)反思。

  4.3 powerpoint、幾何畫(huà)板、多媒體系統(tǒng)

  5、課堂設(shè)計(jì)

  5.1新課引入

 ?。?)用PPT在屏幕上顯示華羅庚的相片和華羅庚關(guān)于“數(shù)形結(jié)合”的至理名言“數(shù)缺形時(shí)少直觀形離數(shù)時(shí)難入微”的話,讓學(xué)生體驗(yàn)數(shù)形結(jié)合是數(shù)學(xué)中非常重要的思想和解決問(wèn)題的常用策略,以數(shù)學(xué)家的語(yǔ)言激發(fā)同學(xué)進(jìn)一步學(xué)好數(shù)學(xué)的愿望;

 ?。?)向量本身就是一個(gè)數(shù)形結(jié)合的產(chǎn)物,它兼具代數(shù)的抽象、嚴(yán)謹(jǐn)和幾何的直觀特點(diǎn),引導(dǎo)學(xué)生回顧有關(guān)“向量實(shí)數(shù)化”的'特征,如模、數(shù)量積、坐標(biāo)的表示等,期望能進(jìn)一步說(shuō)出有關(guān)的不等式和等式,如模的意義、“兩向量和與差的模與向量模的和與差的不等關(guān)系”、“數(shù)量積的平方小于或等于模的平方的積”、將“向量加法的多邊形法則”轉(zhuǎn)化為“有關(guān)坐標(biāo)的等式”……

 ?。?)提出課題,在學(xué)習(xí)“向量在平面幾何中的應(yīng)用”基礎(chǔ)上,學(xué)習(xí)“向量在代數(shù)中的應(yīng)用”。

  5.2問(wèn)題探究

  出示問(wèn)題1。設(shè)a、b為不相等的實(shí)數(shù),要求學(xué)生自主探索、相互討論。

  預(yù)計(jì):學(xué)生思路分下列三種類型:

 ?。?)有根號(hào)想到兩次平方分析;

 ?。?)由根號(hào)內(nèi)的現(xiàn)性特征,聯(lián)想向量的模概念,構(gòu)造向量,將結(jié)論轉(zhuǎn)化為向量表達(dá)式,從而揭示“兩向量和與差的模與向量模的和與差的不等關(guān)系”本質(zhì);

 ?。?)由根號(hào)內(nèi)的現(xiàn)性特征,聯(lián)想兩點(diǎn)間距離公式,構(gòu)造點(diǎn)坐標(biāo),將結(jié)論轉(zhuǎn)化為平面上三點(diǎn)間距離的不等關(guān)系,從而揭示“兩線段長(zhǎng)度之和(差)大于或等于(小于或等于)第三線段的長(zhǎng)”本質(zhì)。

  分析:學(xué)生討論三種方法的異同點(diǎn),期望說(shuō)出(1)是處理絕對(duì)值和根號(hào)的一般代數(shù)方法;而(2)(3)都是應(yīng)用數(shù)形轉(zhuǎn)化解決,體現(xiàn)本問(wèn)題的特殊性,且強(qiáng)調(diào)(2)(3)兩種方法解題原理相同……

  總結(jié)用向量解決代數(shù)問(wèn)題的步驟:

 ?。?)構(gòu)造向量,將已知條件或結(jié)論轉(zhuǎn)化為向量表達(dá)式(數(shù)————形);

  (2)進(jìn)行向量運(yùn)算或向量性質(zhì)的應(yīng)用;

  (3)將所得的結(jié)果轉(zhuǎn)化為所求的結(jié)論(形————數(shù))。

  老師板書(shū)示范后,引導(dǎo)學(xué)生討論,條件不變的前提下,由于構(gòu)造向量或向量性質(zhì)應(yīng)用的差異,會(huì)得到不同的結(jié)論,期望同學(xué)一題多變……

  注意:“兩向量和與差的模與向量模的和與差的不等關(guān)系”等號(hào)成立的條件,為下面突破難點(diǎn)作好鋪墊。

  練一練

  求函數(shù)的最小值。

  由學(xué)生的錯(cuò)誤答案13,引導(dǎo)學(xué)生尋找錯(cuò)誤原因,并通過(guò)幾何畫(huà)板演示最小值取得的條件。強(qiáng)調(diào)最值的驗(yàn)證,揭示數(shù)學(xué)問(wèn)題的實(shí)質(zhì),突破難點(diǎn)。

  引導(dǎo):當(dāng)看到

  出示問(wèn)題2,即課本P50例3,讓學(xué)生討論總結(jié)“數(shù)量積的平方小于或等于模的平方的積”的應(yīng)用,就證明了柯西不等式,此時(shí)預(yù)計(jì)學(xué)生比較活躍,課堂進(jìn)入高潮……

  變式

  并指出等號(hào)成立的充要條件。

  預(yù)計(jì):許多學(xué)生已觀察出仍然是“數(shù)量積的平方小于或等于模的平方的積”的應(yīng)用,揭示數(shù)學(xué)本質(zhì)本質(zhì),體會(huì)柯西不等式所反映實(shí)數(shù)關(guān)系的奇妙性,感受一般與特殊關(guān)系。

  注意:“數(shù)量積的平方小于或等于模的平方的積”中等號(hào)成立的條件,為下面練習(xí)鋪墊,。

  練一練

  預(yù)計(jì):學(xué)生使用計(jì)算器,很快發(fā)現(xiàn)值為0……

  教師因勢(shì)利導(dǎo):你能不用計(jì)數(shù)器解決嗎?觀察角構(gòu)成的等差數(shù)列的代數(shù)特征,公差為72,項(xiàng)數(shù)為5,如果構(gòu)造五個(gè)單位向量且順次連接,那么將會(huì)得到什么圖形?學(xué)生動(dòng)手實(shí)驗(yàn)畫(huà)圖、幾何畫(huà)板演示,學(xué)生觀察、體驗(yàn)。

  °

  預(yù)計(jì):學(xué)生回答正五邊形,并很快解釋值為0的理由,將五個(gè)單位向量的起點(diǎn)放在原點(diǎn)處,終點(diǎn)連接,也構(gòu)成正五邊形,原點(diǎn)為其中心,由力學(xué)知識(shí)所知,五個(gè)單位向量的和為零向量。

  教師給予表?yè)P(yáng),強(qiáng)調(diào)同學(xué)有很好的直覺(jué)思維,因?yàn)橐粋€(gè)真理的發(fā)現(xiàn)很重要,而證明只是一個(gè)時(shí)間問(wèn)題。正如大數(shù)學(xué)家、物理學(xué)家牛頓有句名言:“沒(méi)有大膽的猜想,就做不出偉大的發(fā)現(xiàn)?!辈⒐膭?lì)他完成邏輯證明。

  教師點(diǎn)撥:既然構(gòu)造五個(gè)單位向量能組成正五邊形,那么對(duì)于多邊形有怎樣的向量運(yùn)算性質(zhì)呢?

  學(xué)生:此時(shí)五個(gè)單位向量的和為零向量的結(jié)論有了依據(jù),學(xué)生興奮不已,而且得到了一個(gè)“副產(chǎn)品”,這五個(gè)角的正弦和也為0。

  由此引導(dǎo)學(xué)生自我編題,體驗(yàn)一類三角求值的本質(zhì)特點(diǎn),從而進(jìn)行一般研究。

  推廣:

  5、3課堂總結(jié),

 ?。?)深化理解向量概念,熟練掌握向量的運(yùn)算和性質(zhì)。掌握平面向量在代數(shù)中應(yīng)用的解題步驟。

 ?。?)善于抽象概括,從而做到觸類旁通;研究問(wèn)題的數(shù)學(xué)特征(代數(shù)意義、幾何意義),善于聯(lián)想,使數(shù)量關(guān)系與幾何形式有機(jī)結(jié)合。

 ?。?)通過(guò)問(wèn)題探究,應(yīng)注重邏輯思維和直覺(jué)思維的有機(jī)滲透,因?yàn)橹庇X(jué)思維是創(chuàng)造性思維活動(dòng)的一種表現(xiàn)。

  5、4注意

  向量是解決數(shù)學(xué)問(wèn)題的一個(gè)工具,當(dāng)然如果不用向量,也可以解決有關(guān)問(wèn)題。

  但是如果由代數(shù)特征,聯(lián)想向量的概念和運(yùn)算,巧設(shè)向量解題,那么可以簡(jiǎn)化問(wèn)題解決,也可以加強(qiáng)數(shù)形結(jié)合思想的應(yīng)用。

  5、5作業(yè)(為進(jìn)一步鞏固本課所學(xué)知識(shí)和方法,完成下列作業(yè),因課上時(shí)間)

  5、6板書(shū)

  投影和黑板(在代數(shù)中應(yīng)用向量的運(yùn)算性質(zhì)解題的工具和問(wèn)題1的解題過(guò)程及問(wèn)題2、3的簡(jiǎn)要過(guò)程一直留在黑板上,其它都通過(guò)投影顯示。)

《平面向量》說(shuō)課稿4

  一、說(shuō)教材

  平面向量的數(shù)量積是兩向量之間的乘法,而平面向量的坐標(biāo)表示把向量之間的運(yùn)算轉(zhuǎn)化為數(shù)之間的運(yùn)算。本節(jié)內(nèi)容是在平面向量的坐標(biāo)表示以及平面向量的數(shù)量積及其運(yùn)算律的基礎(chǔ)上,介紹了平面向量數(shù)量積的坐標(biāo)表示,平面兩點(diǎn)間的距離公式,和向量垂直的坐標(biāo)表示的充要條件。為解決直線垂直問(wèn)題,三角形邊角的有關(guān)問(wèn)題提供了很好的辦法。本節(jié)內(nèi)容也是全章重要內(nèi)容之一。

  二、說(shuō)學(xué)習(xí)目標(biāo)和要求

  通過(guò)本節(jié)的學(xué)習(xí),要讓學(xué)生掌握

  (1)、平面向量數(shù)量積的坐標(biāo)表示。

 ?。?)、平面兩點(diǎn)間的距離公式。

  (3)、向量垂直的坐標(biāo)表示的充要條件。

  以及它們的一些簡(jiǎn)單應(yīng)用,以上三點(diǎn)也是本節(jié)課的重點(diǎn),本節(jié)課的難點(diǎn)是向量垂直的坐標(biāo)表示的充要條件以及它的`靈活應(yīng)用。

  三、說(shuō)教法

  在教學(xué)過(guò)程中,我主要采用了以下幾種教學(xué)方法、

 ?。?)啟發(fā)式教學(xué)法

  因?yàn)楸竟?jié)課重點(diǎn)的坐標(biāo)表示公式的推導(dǎo)相對(duì)比較容易,所以這節(jié)課我準(zhǔn)備讓學(xué)生自行推導(dǎo)出兩個(gè)向量數(shù)量積的坐標(biāo)表示公式,然后引導(dǎo)學(xué)生發(fā)現(xiàn)幾個(gè)重要的結(jié)論、如模的計(jì)算公式,平面兩點(diǎn)間的距離公式,向量垂直的坐標(biāo)表示的充要條件。

  (2)講解式教學(xué)法

  主要是講清概念,解除學(xué)生在概念理解上的疑惑感;例題講解時(shí),演示解題過(guò)程!

  主要輔助教學(xué)的手段(powerpoint)。

 ?。?)討論式教學(xué)法

  主要是通過(guò)學(xué)生之間的相互交流來(lái)加深對(duì)較難問(wèn)題的理解,提高學(xué)生的自學(xué)能力和發(fā)現(xiàn)、分析、解決問(wèn)題以及創(chuàng)新能力。

  四、說(shuō)學(xué)法

  學(xué)生是課堂的主體,一切教學(xué)活動(dòng)都要圍繞學(xué)生展開(kāi),借以誘發(fā)學(xué)生的學(xué)習(xí)興趣,增強(qiáng)課堂上和學(xué)生的交流,從而達(dá)到及時(shí)發(fā)現(xiàn)問(wèn)題,解決問(wèn)題的目的。通過(guò)精講多練,充分調(diào)動(dòng)學(xué)生自主學(xué)習(xí)的積極性。如讓學(xué)生自己動(dòng)手推導(dǎo)兩個(gè)向量數(shù)量積的坐標(biāo)公式,引導(dǎo)學(xué)生推導(dǎo)4個(gè)重要的結(jié)論!并在具體的問(wèn)題中,讓學(xué)生建立方程的思想,更好的解決問(wèn)題!

  五、說(shuō)教學(xué)過(guò)程

  這節(jié)課我準(zhǔn)備這樣進(jìn)行、

  首先提出問(wèn)題、要算出兩個(gè)非零向量的數(shù)量積,我們需要知道哪些量?

  繼續(xù)提出問(wèn)題、假如知道兩個(gè)非零向量的坐標(biāo),是不是可以用這兩個(gè)向量的坐標(biāo)來(lái)表示這兩個(gè)向量的數(shù)量積呢?

  引導(dǎo)學(xué)生自己推導(dǎo)平面向量數(shù)量積的坐標(biāo)表示公式,在此公式基礎(chǔ)上還可以引導(dǎo)學(xué)生得到以下幾個(gè)重要結(jié)論。

  (1) 模的計(jì)算公式

 ?。?)平面兩點(diǎn)間的距離公式。

 ?。?)兩向量夾角的余弦的坐標(biāo)表示

 ?。?)兩個(gè)向量垂直的標(biāo)表示的充要條件

  第二部分是例題講解,通過(guò)例題講解,使學(xué)生更加熟悉公式并會(huì)加以應(yīng)用。

  例題1是書(shū)上122頁(yè)例1,此題是直接用平面向量數(shù)量積的坐標(biāo)公式的題,目的是讓學(xué)生熟悉這個(gè)公式,并在此題基礎(chǔ)上,求這兩個(gè)向量的夾角?目的是讓學(xué)生熟悉兩向量夾角的余弦的坐標(biāo)表示公式例題2是直接證明直線垂直的題,雖然比較簡(jiǎn)單,但體現(xiàn)了一種重要的證明方法,這種方法要讓學(xué)生掌握,其實(shí)這一例題也是兩個(gè)向量垂直坐標(biāo)表示的充要條件的一個(gè)應(yīng)用、即兩個(gè)向量的數(shù)量積是否為零是判斷相應(yīng)的兩條直線是否垂直的重要方法之一。

  例題3是在例2的基礎(chǔ)上稍微作了一下改變,目的是讓學(xué)生會(huì)應(yīng)用公式來(lái)解決問(wèn)題,并讓學(xué)生在這要有建立方程的思想。

  再配以練習(xí),讓學(xué)生能熟練的應(yīng)用公式,掌握今天所學(xué)內(nèi)容。

《平面向量》說(shuō)課稿5

  一、 教材分析

  1.本課的地位及作用:平面向量數(shù)量積的坐標(biāo)表示,就是運(yùn)用坐標(biāo)這一量化工具表達(dá)向量的數(shù)量積運(yùn)算,為研究平面中的距離、垂直、角度等問(wèn)題提供了全新的手段。它把向量的數(shù)量積與坐標(biāo)運(yùn)算兩個(gè)知識(shí)點(diǎn)緊密聯(lián)系起來(lái),是全章重點(diǎn)之一。

  2學(xué)生情況分析:在此之前學(xué)生已學(xué)習(xí)了平面向量的坐標(biāo)表示和平面向量數(shù)量積概念及運(yùn)算,但數(shù)量積是用長(zhǎng)度和夾角這兩個(gè)概念來(lái)表示的,應(yīng)用起來(lái)不太方便,如何用坐標(biāo)這一最基本、最常用的工具來(lái)表示數(shù)量積,使之應(yīng)用更方便,就是擺在學(xué)生面前的一個(gè)亟待解決的問(wèn)題。因此,本節(jié)內(nèi)容的學(xué)習(xí)是學(xué)生認(rèn)知發(fā)展和知識(shí)構(gòu)建的一個(gè)合情、合理的“生長(zhǎng)點(diǎn)”。所以,本節(jié)課采取以學(xué)生自主完成為主,教師查漏補(bǔ)缺的教學(xué)方法。因此結(jié)合中學(xué)生的認(rèn)知結(jié)構(gòu)特點(diǎn)和學(xué)生實(shí)際。我將本節(jié)教學(xué)目標(biāo)確定為:

  1、理解掌握平面向量數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行數(shù)量積的運(yùn)算。理解掌握向量的模、夾角等公式。能根據(jù)公式解決兩個(gè)向量的夾角、垂直等問(wèn)題

  2、經(jīng)歷根據(jù)平面向量數(shù)量積的意義探究其坐標(biāo)表示的過(guò)程,體驗(yàn)在此基礎(chǔ)上探究發(fā)現(xiàn)向量的模、夾角等重要的度量公式的成功樂(lè)趣,培養(yǎng)學(xué)生的探究能力、創(chuàng)新精神。

  教學(xué)重點(diǎn)

  平面向量數(shù)量積的坐標(biāo)表示及應(yīng)用

  教學(xué)難點(diǎn)

  探究發(fā)現(xiàn)公式

  二、 教學(xué)方法和手段

  1教學(xué)方法:結(jié)合本節(jié)教材淺顯易懂,又有前面平面向量的數(shù)量積和向量的坐標(biāo)表示等知識(shí)作鋪墊的內(nèi)容特點(diǎn),兼顧高一學(xué)生已具備一定的數(shù)學(xué)思維能力和處理向量問(wèn)題的方法的現(xiàn)狀,我主要采用“誘思探究教學(xué)法”,其核心是“誘導(dǎo)思維,探索研究”,其教學(xué)思想是“教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的原則,為此,我通過(guò)精心設(shè)置的一個(gè)個(gè)問(wèn)題,激發(fā)學(xué)生的求知欲,積極的鼓勵(lì)學(xué)生的.參與,給學(xué)生獨(dú)立思考的空間,鼓勵(lì)學(xué)生自主探索,最終在教師的指導(dǎo)下去探索發(fā)現(xiàn)問(wèn)題,解決問(wèn)題。在教學(xué)中,我適時(shí)的對(duì)學(xué)生學(xué)習(xí)過(guò)程給予評(píng)價(jià),適當(dāng)?shù)脑u(píng)價(jià),可以培養(yǎng)學(xué)生的自信心,合作交流的意識(shí),更進(jìn)一步地激發(fā)了學(xué)生的學(xué)習(xí)興趣,讓他們體驗(yàn)成功的喜悅。

  2教學(xué)手段:利用多媒體輔助教學(xué),可以加大一堂課的信息容量,極大提高學(xué)生的學(xué)習(xí)興趣。

  三、 學(xué)法指導(dǎo)

  改善學(xué)生的學(xué)習(xí)方式是高中數(shù)學(xué)課程追求的基本理念。獨(dú)立思考,自主探索,動(dòng)手實(shí)踐,合作交流等都是學(xué)習(xí)數(shù)學(xué)的重要方式,這些方式有助于發(fā)揮學(xué)生學(xué)習(xí)主觀能動(dòng)性,使學(xué)生的學(xué)習(xí)過(guò)程成為在教師引導(dǎo)下的“再創(chuàng)造”的過(guò)程。以激發(fā)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新潛能,幫助學(xué)生養(yǎng)成獨(dú)立思考,積極探索的習(xí)慣。為了實(shí)現(xiàn)這一目標(biāo),本節(jié)教學(xué)讓學(xué)生主動(dòng)參與,讓學(xué)生動(dòng)手,動(dòng)口、動(dòng)腦。通過(guò)思考、計(jì)算、歸納、推理,鼓勵(lì)學(xué)生多向思維,積極活動(dòng),勇于探索。具體體現(xiàn)在:1、通過(guò)提出問(wèn)題,把問(wèn)題的求解與探究貫穿整堂課,使學(xué)生在自主探究中發(fā)現(xiàn)了結(jié)論,推廣了命題,使學(xué)生感到成果是自己得到的,增強(qiáng)了成就感,培養(yǎng)了學(xué)生學(xué)好數(shù)學(xué)的信心和良好的學(xué)習(xí)動(dòng)機(jī)。2、通過(guò)數(shù)與形的充分挖掘,通過(guò)對(duì)向量平行與垂直條件的坐標(biāo)表示的類比,培養(yǎng)了學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想,教給了學(xué)生類比聯(lián)想的記憶方法。

  四、教學(xué)程序

  本節(jié)課分為復(fù)習(xí)回顧、定理推導(dǎo)、引申推廣、例題講析、練習(xí)與小結(jié)五部分。

  復(fù)習(xí)回顧部分通過(guò)兩個(gè)問(wèn)題,復(fù)習(xí)了與本節(jié)內(nèi)容相關(guān)的數(shù)量積概念,為本節(jié)內(nèi)容的學(xué)習(xí)作了必要的鋪墊。

  定理推導(dǎo)部分通過(guò)設(shè)問(wèn),引出尋求向量的數(shù)量積的坐標(biāo)表示的必要性,引入課題,并引導(dǎo)學(xué)生應(yīng)用前述知識(shí)共同推導(dǎo)出數(shù)量積的坐標(biāo)表示。

  引申推廣部分,讓學(xué)生自主推導(dǎo)出向量的長(zhǎng)度公式,向量垂直條件的坐標(biāo)表示、夾角公式等三個(gè)結(jié)論,強(qiáng)化了學(xué)生的動(dòng)手能力和自主探究能力。

  例題講析,通過(guò)四道緊扣教材的例題的精講,突出了結(jié)論的應(yīng)用,也起到了示范作用。

  練習(xí)及小結(jié):通過(guò)練習(xí)題驗(yàn)收教學(xué)效果,突出訓(xùn)練主線,小結(jié)部分畫(huà)龍點(diǎn)睛,強(qiáng)調(diào)本節(jié)重點(diǎn)。再結(jié)合課后作業(yè),進(jìn)一步實(shí)現(xiàn)本節(jié)課的教學(xué)目的。同時(shí)小結(jié)也體現(xiàn)主體性,由教師提出問(wèn)題學(xué)生總結(jié)得出。

《平面向量》說(shuō)課稿6

  各位評(píng)委,老師們:大家好!

  很高興參加這次說(shuō)課活動(dòng)。這對(duì)我來(lái)說(shuō)也是一次難得的學(xué)習(xí)和鍛煉的機(jī)會(huì),感謝各位老師在百忙之中來(lái)此予以指導(dǎo)。希望各位評(píng)委和老師們對(duì)我的說(shuō)課內(nèi)容提出寶貴意見(jiàn)。

  我說(shuō)課的內(nèi)容是平面向量的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級(jí)中學(xué)教科書(shū)(試驗(yàn)修訂本-必修)數(shù)學(xué)第一冊(cè)下,教學(xué)內(nèi)容為第96頁(yè)至98頁(yè)第五章第一節(jié)。本校是浙江省一級(jí)重點(diǎn)中學(xué),學(xué)生基礎(chǔ)相對(duì)較好。我在進(jìn)行教學(xué)設(shè)計(jì)時(shí),也充分考慮到了這一點(diǎn)。

  下面我從教材分析,教學(xué)目標(biāo)的確定,教學(xué)方法的選擇和教學(xué)過(guò)程的設(shè)計(jì)四個(gè)方面來(lái)匯報(bào)我對(duì)這節(jié)課的教學(xué)設(shè)想。

  一教材分析

  (1)地位和作用

  向量是近代數(shù)學(xué)中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問(wèn)題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉(zhuǎn)化為向量的加(減)法,數(shù)乘向量,數(shù)量積運(yùn)算(運(yùn)算率),從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運(yùn)算體系。向量是溝通代數(shù),幾何與三角函數(shù)的一種工具,有著極其豐富的實(shí)際背景,在數(shù)學(xué)和物理學(xué)科中具有廣泛的應(yīng)用。

  平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎(chǔ)上進(jìn)一步對(duì)向量的深入學(xué)習(xí)。為學(xué)習(xí)向量的知識(shí)體系奠定了知識(shí)和方法基礎(chǔ)。

  (2)教學(xué)結(jié)構(gòu)的調(diào)整

  課本在這一部分內(nèi)容的教學(xué)為一課時(shí),首先從小船航行的距離和方向兩個(gè)要素出發(fā),抽象出向量的概念,并重點(diǎn)說(shuō)明了向量與數(shù)量的區(qū)別。然后介紹了向量的幾何表示,向量的長(zhǎng)度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時(shí)深化其認(rèn)知過(guò)程和探究過(guò)程。在教學(xué)中我將教學(xué)的順序做如下的調(diào)整:將本節(jié)教學(xué)中認(rèn)知過(guò)程的教學(xué)內(nèi)容適當(dāng)集中,以突出這節(jié)課的主題;例題,習(xí)題部分主要由學(xué)生依照概念自行分析,獨(dú)立完成。

  (3)重點(diǎn),難點(diǎn),關(guān)鍵

  由于本節(jié)課是本章內(nèi)容的第一節(jié)課,是學(xué)生學(xué)習(xí)本章的基礎(chǔ)。為了本章后面知識(shí)的'學(xué)習(xí),首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節(jié)課的重點(diǎn)。本節(jié)課是為高一后半學(xué)期學(xué)生設(shè)計(jì)的,盡管此時(shí)的學(xué)生已經(jīng)有了一定的學(xué)習(xí)方法和習(xí)慣,但根據(jù)以往的教學(xué)經(jīng)驗(yàn),多數(shù)學(xué)生對(duì)向量的認(rèn)識(shí)還比較單一,僅僅考慮其大小,忽略其方向,這對(duì)學(xué)生的理解能力要求比較高,所以我認(rèn)為向量概念也是這節(jié)課的難點(diǎn)。而解決這一難點(diǎn)的關(guān)鍵是多用復(fù)雜的幾何圖形中相等的有向線段讓學(xué)生進(jìn)行辨認(rèn),加深對(duì)向量的理解。

  二教學(xué)目標(biāo)的確定

  根據(jù)本課教材的特點(diǎn),新大綱對(duì)本節(jié)課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個(gè)方面確定了以下教學(xué)目標(biāo):

  (1)基礎(chǔ)知識(shí)目標(biāo):理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會(huì)用字母表示向量,能讀寫(xiě)已知圖中的向量。會(huì)根據(jù)圖形判定向量是否平行,共線,相等。

  (2)能力訓(xùn)練目標(biāo):培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法,培養(yǎng)學(xué)生觀察問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。

  (3)情感目標(biāo):讓學(xué)生在民主、和諧的共同活動(dòng)中感受學(xué)習(xí)的樂(lè)趣。

  三教學(xué)方法的選擇

 ?、窠虒W(xué)方法

  本節(jié)課我采用了”啟發(fā)探究式的教學(xué)方法,根據(jù)本課教材的特點(diǎn)和學(xué)生的實(shí)際情況在教學(xué)中突出以下兩點(diǎn):

  (1)由教材的特點(diǎn)確立類比思維為教學(xué)的主線。

  從教材內(nèi)容看平面向量無(wú)論從形式還是內(nèi)容都與物理學(xué)中的有向線段,矢量的概念類似。因此在教學(xué)中運(yùn)用類比作為思維的主線進(jìn)行教學(xué)。讓學(xué)生充分體會(huì)數(shù)學(xué)知識(shí)與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過(guò)程。

  (2)由學(xué)生的特點(diǎn)確立自主探索式的學(xué)習(xí)方法

  通常學(xué)生對(duì)于概念課學(xué)起來(lái)很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來(lái)激發(fā)學(xué)生的學(xué)習(xí)興趣,另外,學(xué)生都有表現(xiàn)自己的欲望,希望得到老師和其他同學(xué)的認(rèn)可,要多表?yè)P(yáng),多肯定來(lái)激勵(lì)他們的學(xué)習(xí)熱情??紤]到我校學(xué)生的基礎(chǔ)較好,思維較為活躍,對(duì)自主探索式的學(xué)習(xí)方法也有一定的認(rèn)識(shí),所以在教學(xué)中我通過(guò)創(chuàng)設(shè)問(wèn)題情境,啟發(fā)引導(dǎo)學(xué)生運(yùn)用科學(xué)的思維方法進(jìn)行自主探究。將學(xué)生的獨(dú)立思考,自主探究,交流討論等探索活動(dòng)貫穿于課堂教學(xué)的全過(guò)程,突出學(xué)生的主體作用。

 ?、蚪虒W(xué)手段

  本節(jié)課中,除使用常規(guī)的教學(xué)手段外,我還使用了多媒體投影儀和計(jì)算機(jī)來(lái)輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺(tái);計(jì)算機(jī)演示的作圖過(guò)程則有助于滲透數(shù)形結(jié)合思想,更易于對(duì)概念的理解和難點(diǎn)的突破。

  四教學(xué)過(guò)程的設(shè)計(jì)

 ?、裰R(shí)引入階段---提出學(xué)習(xí)課題,明確學(xué)習(xí)目標(biāo)

  (1)創(chuàng)設(shè)情境——引入概念

  數(shù)學(xué)學(xué)習(xí)應(yīng)該與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗(yàn)和已有的知識(shí)背景出發(fā),讓他們?cè)谏钪腥グl(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認(rèn)識(shí)并掌握數(shù)學(xué)。

  由生活中具體的向量的實(shí)例引入:大海中船只的航線,中國(guó)象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點(diǎn),有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。

  (2)觀察歸納——形成概念

  由實(shí)例得出有向線段的概念,有向線段的三個(gè)要素:起點(diǎn),方向,長(zhǎng)度。明確知道了有向線段的起點(diǎn),方向和長(zhǎng)度,它的終點(diǎn)就唯一確定。再有目的的進(jìn)行設(shè)計(jì),引導(dǎo)學(xué)生概括總結(jié)出本課新的知識(shí)點(diǎn):向量的概念及其幾何表示。

  (3)討論研究——深化概念

  在得到概念后進(jìn)行歸納,深化,之后向?qū)W生提出以下三個(gè)問(wèn)題:

  ①向量的要素是什么?

 ?、谙蛄恐g能否比較大小?

 ?、巯蛄颗c數(shù)量的區(qū)別是什么?

  同時(shí)指出這就是本節(jié)課我們要研究和學(xué)習(xí)的主題。

 ?、蛑R(shí)探索階段---探索平面向量的平行向量。相等向量等概念

  (1)總結(jié)反思——提高認(rèn)識(shí)

  方向相同或相反的非零向量叫平行向量,也即共線向量,并且規(guī)定0與任一向量平行.長(zhǎng)度相等且方向相同的向量叫相等向量,規(guī)定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。

  (2)即時(shí)訓(xùn)練—鞏固新知

  為了使學(xué)生達(dá)到對(duì)知識(shí)的深化理解,從而達(dá)到鞏固提高的效果,我特地設(shè)計(jì)了一組即時(shí)訓(xùn)練題,通過(guò)學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來(lái)鞏固新知識(shí)。

 ?。劬毩?xí)1]判斷下列命題是否正確,若不正確,請(qǐng)簡(jiǎn)述理由.

《平面向量》說(shuō)課稿7

  尊敬的各位評(píng)委、各位老師:

  大家好!

  今天我說(shuō)課的題目是《平面向量的數(shù)量積》。下面我將從四個(gè)方面闡述我對(duì)本節(jié)課的分析和設(shè)計(jì)。

  第一部分:教學(xué)內(nèi)容分析:

  1、教材的地位及作用:

  將平面向量引入高中課程,是現(xiàn)行數(shù)學(xué)教材的重要特色之一。由于向量既能體現(xiàn)“形”的直觀位置特征,又具有“數(shù)”的良好運(yùn)算性質(zhì),是數(shù)形結(jié)合和轉(zhuǎn)換的橋梁。而這一切之所以能夠?qū)崿F(xiàn),平面向量的數(shù)量積功不可沒(méi)。《平面向量的數(shù)量積》是高一數(shù)學(xué)下冊(cè)第五章第六節(jié)的內(nèi)容。平面向量數(shù)量積是中學(xué)數(shù)學(xué)的一個(gè)重要概念。它的性質(zhì)很多,應(yīng)用很廣,是后面學(xué)習(xí)的重要基礎(chǔ)。本課是第一課時(shí),學(xué)生對(duì)概念的理解尤為重要。

  2、教學(xué)目標(biāo)的.設(shè)定:

 ?。?)知識(shí)目標(biāo):

  平面向量數(shù)量積的定義及初步運(yùn)用。

 ?。?)能力目標(biāo):

  通過(guò)對(duì)平面向量數(shù)量積定義的剖析,培養(yǎng)學(xué)生分析問(wèn)題發(fā)現(xiàn)問(wèn)題能力,使學(xué)生的思維能力得到訓(xùn)練。

  (3)情感目標(biāo):

  通過(guò)本節(jié)課的學(xué)習(xí),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,體會(huì)學(xué)習(xí)的快樂(lè)。

  3、教學(xué)重點(diǎn):平面向量的數(shù)量積定義。

  4、教學(xué)難點(diǎn):平面向量的數(shù)量積定義及平面向量數(shù)量積的運(yùn)用

  第二部分:教法分析:

  采用啟發(fā)引導(dǎo)式與講練相結(jié)合,并借助多媒體教學(xué)手段,使學(xué)生理解平面向量數(shù)量積的定義,理解定義之后引導(dǎo)學(xué)生推導(dǎo)數(shù)量積的性質(zhì),通過(guò)例題和練習(xí)加深學(xué)生對(duì)平面向量數(shù)量積定義的認(rèn)識(shí),初步掌握平面向量數(shù)量積定義的運(yùn)用。

《平面向量》說(shuō)課稿8

  各位評(píng)委、各位老師,大家好。今天,我說(shuō)課的內(nèi)容是:人教A版必修四第二章第三節(jié)《平面向量的基本定理及坐標(biāo)表示》第一課時(shí),下面,我將從教材分析、教法分析、學(xué)法指導(dǎo)、教學(xué)過(guò)程以及設(shè)計(jì)說(shuō)明五個(gè)方面來(lái)闡述一下我對(duì)本節(jié)課的設(shè)計(jì)。

  一、教材分析:

  1、教材的地位和作用:

  向量是溝通代數(shù)、幾何與三角函數(shù)x的一種工具,有著極其豐富的實(shí)際背景。本課時(shí)內(nèi)容包含“平面向量基本定理”和“平面向量的正交分解及坐標(biāo)表示”.此前的教學(xué)內(nèi)容由實(shí)際問(wèn)題引入向量概念,研究了向量的線性運(yùn)算,集中反映了向量的幾何特征,而本課時(shí)之后的內(nèi)容主要是研究向量的坐標(biāo)運(yùn)算,更多的是向量的代數(shù)形態(tài)。平面向量基本定理是坐標(biāo)表示的基礎(chǔ),坐標(biāo)表示使平面中的向量與它的坐標(biāo)建立起了一一對(duì)應(yīng)的關(guān)系,這為通過(guò)“數(shù)”的運(yùn)算處理“形”的問(wèn)題搭起了橋梁,也決定了本課內(nèi)容在向量知識(shí)體系中的核心地位.

  2、教學(xué)目標(biāo):根據(jù)教學(xué)內(nèi)容的特點(diǎn),依據(jù)新課程標(biāo)準(zhǔn)的具體要求,我從以下三個(gè)方面來(lái)確定本節(jié)課的教學(xué)目標(biāo)。

 ?。?)知識(shí)與技能

  了解向量夾角的概念,了解平面向量基本定理及其意義,掌握平面向量的正交 分解及其坐標(biāo)表示。

 ?。?)過(guò)程與方法

  通過(guò)對(duì)平面向量基本定理的探究,以及平面向量坐標(biāo)建立的過(guò)程,讓學(xué)生體驗(yàn)數(shù)學(xué)定理的產(chǎn)生、形成過(guò)程,體驗(yàn)由一般到特殊、類比以及數(shù)形結(jié)合的數(shù)學(xué)思想,從而實(shí)現(xiàn)向量的“量化”表示。

 ?。?)情感、態(tài)度與價(jià)值觀

  引導(dǎo)學(xué)生從生活中挖掘數(shù)學(xué)內(nèi)容,培養(yǎng)學(xué)生的發(fā)現(xiàn)意識(shí)和應(yīng)用意識(shí),提高學(xué)習(xí)數(shù)學(xué)的興趣,感受數(shù)學(xué)的魅力。

  3、教學(xué)重點(diǎn)和難點(diǎn):根據(jù)教材特點(diǎn)及教學(xué)目標(biāo)的要求,我將教學(xué)重點(diǎn)確定為———平面向量基本定理的探究,以及平面向量的坐標(biāo)表示

  教學(xué)難點(diǎn):對(duì)平面向量基本定理的理解及其應(yīng)用

  二、教法分析:

  針對(duì)本節(jié)課的教學(xué)目標(biāo)和學(xué)生的實(shí)際情況,根據(jù)“先學(xué)后教,以學(xué)定教”原則,本節(jié)課采用由“自學(xué)—探究—點(diǎn)撥—建構(gòu)—拓展”五個(gè)環(huán)節(jié)構(gòu)成的誘導(dǎo)式學(xué)案導(dǎo)學(xué)方法。

  三、學(xué)法指導(dǎo)

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此,在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。由于學(xué)生已經(jīng)掌握了向量的概念和簡(jiǎn)單的線性運(yùn)算,并且對(duì)向量的物理背景有初步的了解,我引導(dǎo)學(xué)生采用問(wèn)題探究式學(xué)法。讓學(xué)生借助學(xué)案,在教師創(chuàng)設(shè)的情境下,根據(jù)已有的知識(shí)和經(jīng)驗(yàn),主動(dòng)探索,積極交流,從而建立新的認(rèn)知結(jié)構(gòu)。

  四、重點(diǎn)說(shuō)明本節(jié)課的教學(xué)過(guò)程:本節(jié)課共設(shè)計(jì)了五個(gè)環(huán)節(jié):發(fā)放學(xué)案,依案自學(xué);分組探究 ,信息反饋;精講點(diǎn)撥,解難釋疑 ;歸納總結(jié),建構(gòu)網(wǎng)絡(luò) ;當(dāng)堂達(dá)標(biāo),遷移拓展 。

  1、發(fā)放學(xué)案,依案自學(xué)

  學(xué)習(xí)并非學(xué)生對(duì)教師授予知識(shí)的被動(dòng)接受,而是學(xué)習(xí)者以自身已有的知識(shí)和經(jīng)驗(yàn)為基礎(chǔ)的主動(dòng)建構(gòu)。根據(jù)這一理念,我在課前下發(fā)“導(dǎo)學(xué)學(xué)案”,讓學(xué)生以學(xué)案為依據(jù),以學(xué)習(xí)目標(biāo)、學(xué)習(xí)重點(diǎn)難點(diǎn)為主攻方向,主動(dòng)查閱教材、工具書(shū),思考問(wèn)題,分析解決問(wèn)題,在嘗試中獲取知識(shí),發(fā)展能力。這是我編制學(xué)案的綱要。

  經(jīng)過(guò)學(xué)生的自學(xué),在課堂上,我采用提問(wèn)的方式,讓學(xué)生對(duì)知識(shí)點(diǎn)進(jìn)行簡(jiǎn)單概述,并闡述自己的學(xué)習(xí)方法和體會(huì)。其中,向量的夾角概念,學(xué)生基本上能獨(dú)立解決,我會(huì)引導(dǎo)學(xué)生歸納出求兩個(gè)向量夾角的要點(diǎn):(1)兩個(gè)向量要共起點(diǎn),(2)兩個(gè)向量的正方向所成的角。然后,通過(guò)學(xué)案上的練習(xí)題目1,檢查學(xué)生的掌握程度。對(duì)本節(jié)課的重點(diǎn)和難點(diǎn):平面向量基本定理的探究及坐標(biāo)表示,我準(zhǔn)備通過(guò)分組探究,精講點(diǎn)撥,歸納總結(jié)三個(gè)方面來(lái)突破。

  2、分組探究 ,信息反饋

  這一環(huán)節(jié),我先把學(xué)生分組,讓其對(duì)定理及坐標(biāo)表示,進(jìn)行討論、探究、交流,先組內(nèi)互相啟發(fā),消化個(gè)體疑點(diǎn),然后以組為單位提出疑問(wèn)。如果某個(gè)問(wèn)題,某個(gè)組已經(jīng)解決,其它組仍是疑點(diǎn),我讓已解決問(wèn)題的小組做一次"教師",面向全體學(xué)生講解,教師可以適當(dāng)補(bǔ)充點(diǎn)撥,這也可以說(shuō)是討論的繼續(xù)。對(duì)于難度較大的傾向性問(wèn)題,我準(zhǔn)備

  3、精講點(diǎn)撥,解難釋疑

  本節(jié)課的目的是要幫助學(xué)生建立向量的坐標(biāo).要求先運(yùn)用已有的知識(shí)去研究平面向量的基本定理,然后以這個(gè)定理為基礎(chǔ)建立向量的坐標(biāo)。對(duì)于定理的探究,有些學(xué)生只是從形式上加以記憶,缺乏對(duì)問(wèn)題本質(zhì)的理解,為了幫助學(xué)生改進(jìn)學(xué)習(xí)方法,提升數(shù)學(xué)能力,我先提問(wèn)學(xué)生如何把平面上任一向量分解成兩個(gè)不共線向量的線性組合,學(xué)生會(huì)通過(guò)作圖來(lái)說(shuō)明這一問(wèn)題。我們要強(qiáng)調(diào)的是,這里的向量是自由向量,其起點(diǎn)是可以移動(dòng)的,將三個(gè)向量的起點(diǎn)放在一起可便于研究問(wèn)題.類比物理上力的分解,利用平行四邊形法則,我們把向量 分解成 ,根據(jù)向量共線定理 ,存在一對(duì)實(shí)數(shù)λ1,λ2 ,使 , 從而 =λ1 +λ2 ,教師再引導(dǎo)學(xué)生自主歸納,從而得出平面向量基本定理。為了加深對(duì)定理的理解,我設(shè)計(jì)了如下的幾個(gè)問(wèn)題,學(xué)生思考回答后,教師再利用幾何畫(huà)板作進(jìn)一步的'演示。當(dāng) , 共線時(shí),與它們不共線的向量 不能用 , 當(dāng)線性表示,所以共線向量不能作為基底;當(dāng)不共線向量 , ,任意 確定后,λ1,λ2是唯一確定的;我們改變向量 的大小和方向,發(fā)現(xiàn) 仍然可以用 , 線性表示,說(shuō)明了任意向量 能分解成兩個(gè)不共線向量的線性組合;改變基底 , 的大小和方向,保持向量 不變,剛才的結(jié)論仍然成立,說(shuō)明了同一個(gè)向量 能用不同的基底線性表示,由此說(shuō)明基底不唯一,具有可選擇性。

  對(duì)于向量的坐標(biāo)表示,我先用火箭速度的分解引入正交分解,然后提問(wèn):根據(jù)平面向量基本定理,基底是可以選擇的,為了研究的方便,我們應(yīng)該選取什么樣的基底呢?引導(dǎo)學(xué)生由一般到特殊,選擇平面直角坐標(biāo)系中 軸和 軸上,且方向與軸的正方向同向的單位向量 做基底,那么根據(jù)剛剛得出的定理,任一向量 =x +y ,由于x,y是唯一的,于是存在數(shù)對(duì)(x,y)與向量a一一對(duì)應(yīng),從而得到平面向量的坐標(biāo)表示。需要說(shuō)明的兩點(diǎn)是:第一,向量的坐標(biāo)表示與其分解形式是等價(jià)的,可以互相轉(zhuǎn)化。第二點(diǎn)說(shuō)明:求向量坐標(biāo)的關(guān)鍵是構(gòu)造平行四邊形,確定實(shí)數(shù)x、y。學(xué)生在理解起點(diǎn)不在坐標(biāo)原點(diǎn)的向量的坐標(biāo)表示時(shí)會(huì)出現(xiàn)障礙,其原因是在直角坐標(biāo)系中點(diǎn)和點(diǎn)的坐標(biāo)是一一對(duì)應(yīng)的,到了向量時(shí),向量的坐標(biāo)只是和從原點(diǎn)出發(fā)的向量一一對(duì)應(yīng),必須使學(xué)生在這種特定的場(chǎng)合中明白:要求點(diǎn) 的坐標(biāo)就是要求向量 的坐標(biāo).只要結(jié)合向量相等的條件學(xué)生應(yīng)該容易克服這一難點(diǎn)。隨后,通過(guò)學(xué)案上的練習(xí)2,讓學(xué)生鞏固所學(xué)知識(shí)。

  4、第四個(gè)環(huán)節(jié),歸納總結(jié),建構(gòu)網(wǎng)絡(luò)

  建構(gòu)主義教學(xué)理論認(rèn)為,知識(shí)是主體在與情境的交互作用中、在解決問(wèn)題的過(guò)程中能動(dòng)地構(gòu)建起來(lái)的,學(xué)生應(yīng)在教師指導(dǎo)下自主歸納出新舊知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,構(gòu)建知識(shí)網(wǎng)絡(luò),從而培養(yǎng)學(xué)生的分析能力和綜合能力。為此,我設(shè)計(jì)了如下的問(wèn)題:

  通過(guò)本節(jié)課的學(xué)習(xí),你收獲了什么?……

  在學(xué)生回答的過(guò)程中,我及時(shí)反饋,評(píng)價(jià)學(xué)生課堂表現(xiàn),起導(dǎo)向作用。

  學(xué)生完成個(gè)人新知建構(gòu)之后,為了幫助學(xué)生檢驗(yàn)自己的學(xué)習(xí)過(guò)程,我設(shè)計(jì)了

  5、第五個(gè)環(huán)節(jié),當(dāng)堂達(dá)標(biāo),遷移拓展

  本部分檢測(cè)題,緊扣目標(biāo),當(dāng)堂訓(xùn)練,而為了尊重學(xué)生的個(gè)體差異,滿足多樣化學(xué)習(xí)的需要,我又分必做和選做兩部分來(lái)布置題目,允許學(xué)生根據(jù)個(gè)人情況來(lái)完成。

  五、我說(shuō)課的最后一部分是教學(xué)設(shè)計(jì)說(shuō)明:

  1、貫徹了學(xué)生主體、教師主導(dǎo)的原則

  “學(xué)案導(dǎo)學(xué)”要求學(xué)生主動(dòng)試一試,并給予學(xué)生充分自由思考的時(shí)間。學(xué)生在嘗試中遇到問(wèn)題就會(huì)主動(dòng)地去自學(xué)課本和接受教師的指導(dǎo)。這樣,學(xué)習(xí)就變成了學(xué)生自身的需要,使他們產(chǎn)生了“我要學(xué)”的愿望,在這種動(dòng)機(jī)支配下學(xué)生就會(huì)依靠自己的力量積極主動(dòng)地去學(xué)習(xí)。

  教師通過(guò)啟發(fā)、激勵(lì),誘導(dǎo)學(xué)生全員、全過(guò)程參與教學(xué)過(guò)程,體現(xiàn)教師的主導(dǎo)作用。

  2、培養(yǎng)了自主探索,合作交流的能力

  新的課程理念,要求學(xué)生的學(xué)習(xí)不僅僅是在理解基礎(chǔ)上掌握和記憶知識(shí),還要學(xué)習(xí)探索和解決問(wèn)題的方法和途徑。

  本節(jié)課采用誘導(dǎo)式教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問(wèn)題,掌握數(shù)學(xué)知識(shí)、形成數(shù)學(xué)能力,培養(yǎng)探索精神和團(tuán)隊(duì)意識(shí)。

  我相信,通過(guò)本節(jié)課的學(xué)習(xí),學(xué)生獲取的將不僅僅是知識(shí),獲取知識(shí)的手段、途徑和方法,以及勇于探索、合作交流的能力,才是他們最大的收獲。

《平面向量》說(shuō)課稿9

  【研究點(diǎn)】

  在課堂教學(xué)中引導(dǎo)學(xué)生開(kāi)展數(shù)學(xué)交流,培養(yǎng)學(xué)生的數(shù)學(xué)交流能力。

  在數(shù)學(xué)課堂教學(xué)和課外輔導(dǎo)中,常常會(huì)有這樣的情形:學(xué)生覺(jué)得上課聽(tīng)得懂,但一下課做作業(yè)就不知如何下筆;學(xué)生對(duì)于自己所掌握的知識(shí)說(shuō)不出,對(duì)于自己不懂的地方提不出問(wèn)題;或者是對(duì)于作業(yè)學(xué)生會(huì)做,但講不清為什么這樣做,而職中學(xué)生數(shù)學(xué)成績(jī)差的主要原因就在于學(xué)生不會(huì)進(jìn)行交流合作,這表明我們的課堂教學(xué)中缺乏數(shù)學(xué)交流,我們的學(xué)生數(shù)學(xué)交流的能力很低。

  所謂數(shù)學(xué)交流能力就是學(xué)生將自己在學(xué)習(xí)基礎(chǔ)知識(shí)、掌握基本技能過(guò)程中“想到的”“說(shuō)”給別人“聽(tīng)”,對(duì)數(shù)學(xué)問(wèn)題發(fā)表看法,講清道理,相互促進(jìn),相互提高的能力。數(shù)學(xué)交流是多向的,有師生間的交流,學(xué)生間的交流,組際間的交流,學(xué)生與教材間的交流,甚至還有學(xué)生與社會(huì)間的交流等。聽(tīng)、說(shuō)、讀、寫(xiě)是交流的主要方式。

  對(duì)于本堂課,我主要從教材分析、教法分析、學(xué)法指導(dǎo)、教學(xué)過(guò)程等進(jìn)行闡述。

  【教材分析】

  1、地位作用:

  本節(jié)內(nèi)容是第十五章《空間向量和立體幾何Ⅱ》第三節(jié)內(nèi)容,學(xué)生在一年級(jí)已學(xué)了平面向量和立體幾何Ⅰ的基礎(chǔ)內(nèi)容,此章是綜合前面兩章的提高部分內(nèi)容。這節(jié)內(nèi)容要求學(xué)生能學(xué)會(huì)應(yīng)用空間向量解決平面直線、空間直線中的問(wèn)題。本小節(jié)的內(nèi)容分兩個(gè)層次,第一層次是用空間直線的方向向量、平面的法向量判定空間直線、平面間的位置關(guān)系;第二個(gè)層次是能利用直線的方向向量和平面的法向量求空間直線與直線、平面與平面及直線與平面間的夾角。

  2、學(xué)情分析:學(xué)前班的學(xué)生相對(duì)基礎(chǔ)要好一點(diǎn),學(xué)生的學(xué)習(xí)主動(dòng)性較好,有一定的學(xué)習(xí)興趣。所以在教學(xué)中可以嘗試讓學(xué)生進(jìn)行數(shù)學(xué)交流,學(xué)生的合作學(xué)習(xí)能力還可以。但由于教材的編排原因,前后知識(shí)的協(xié)接不是很好,要求學(xué)生對(duì)第一、二冊(cè)基礎(chǔ)掌握扎實(shí),這一點(diǎn)學(xué)生做得不是很好。我是今年才接這個(gè)班,并且在開(kāi)學(xué)初開(kāi)始讓學(xué)生嘗試合作交流的模式,所以說(shuō)還是屬于剛開(kāi)始階段。還有許多的不成熟的地方。

  根據(jù)教材、考試大綱對(duì)學(xué)生的要求,結(jié)合學(xué)生現(xiàn)有的知識(shí)水平和存在的問(wèn)題,我將本節(jié)課的教學(xué)目標(biāo)定為:

  3、教學(xué)目標(biāo):

  知識(shí)目標(biāo):掌握空間直線的方向向量和平面的法向量的概念

  能力目標(biāo):能利用直線的方向向量和平面的法向量判定空間直線、平面間的位置關(guān)系。

  情感目標(biāo):引導(dǎo)學(xué)生開(kāi)展數(shù)學(xué)交流、鼓勵(lì)學(xué)生反思自己的認(rèn)識(shí)和解決問(wèn)題的.方法。

  3、重點(diǎn)與難點(diǎn):利用直線的方向向量和平面的法向量判定平面與平面、直線與平面的位置關(guān)系

  【教法設(shè)計(jì)】

  為了實(shí)現(xiàn)上述教學(xué)目標(biāo),結(jié)合教材特點(diǎn),本課采用的主要教學(xué)方法有“學(xué)案導(dǎo)學(xué)法”、“合作交流法”等。通過(guò)交流已學(xué)過(guò)的平面向量和立體幾何中的相關(guān)知識(shí),過(guò)渡到空間向量應(yīng)用于立體幾何,引導(dǎo)學(xué)生討論兩者之間的關(guān)系,教學(xué)中,啟發(fā)、誘導(dǎo)貫穿始終,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,培養(yǎng)學(xué)生合作交流的能力。

  【學(xué)法指導(dǎo)】

  空間向量這一節(jié)課內(nèi)容抽象,要求學(xué)生有一定的空間想象能力和分析推理能力,學(xué)生接受起來(lái)有一定的困難。因此,設(shè)計(jì)學(xué)案,讓學(xué)生能主動(dòng)預(yù)習(xí)、復(fù)習(xí),參與問(wèn)題的討論、交流,積極探究,善于思考,協(xié)作學(xué)習(xí),便于學(xué)生掌握知識(shí),培養(yǎng)學(xué)生的合作交流能力。

  【教學(xué)過(guò)程】

  在課堂結(jié)構(gòu)上,我根據(jù)學(xué)生的認(rèn)知水平和知識(shí)的銜接關(guān)系,設(shè)計(jì)了四個(gè)主要的程序是:

 ?。?)預(yù)習(xí)交流

 ?。?)新授→形成概念、交流探究、鞏固訓(xùn)練

 ?。?)課堂練習(xí)、小結(jié)→強(qiáng)化重點(diǎn),提高認(rèn)識(shí)

 ?。?)布置作業(yè)→復(fù)習(xí)鞏固等四個(gè)層次的學(xué)法。

  1、預(yù)習(xí)交流

  學(xué)生將課前討論完成的學(xué)案進(jìn)行交流,教師引導(dǎo)學(xué)生評(píng)析糾錯(cuò),查漏補(bǔ)缺。設(shè)計(jì)目的:通過(guò)課前的練習(xí)可以進(jìn)一步明確學(xué)生現(xiàn)在掌握知識(shí)、應(yīng)用知識(shí)的能力及存在的知識(shí)缺陷和解題思路的清晰與否,為本堂課后面要實(shí)施的教學(xué)環(huán)節(jié)拋磚引玉。

  2、新授

  先講解空間直線的方向向量和平面的法向量的概念,并演示說(shuō)明。同時(shí)出示空間直線與直線、直線與平面、平面與平面的位置關(guān)系圖示(1)~(9),引導(dǎo)學(xué)生交流討論用平行向量、方向向量來(lái)判定線、面等的位置關(guān)系。對(duì)于線面、面面相交的問(wèn)題這個(gè)難點(diǎn)問(wèn)題,師生共同探討,推導(dǎo)其關(guān)系。然后出示例題,學(xué)生交流探討,進(jìn)行鞏固練習(xí)。

  設(shè)計(jì)目的:讓學(xué)生在合作交流中學(xué)習(xí)新知識(shí),充分體現(xiàn)學(xué)生的主體地位,激發(fā)學(xué)生學(xué)習(xí)的興趣。

  3、歸納小結(jié)、反饋練習(xí)

  用向量判斷線、面間的位置關(guān)系,前提要找出對(duì)應(yīng)的平面向量或法向量,然后利用向量之間的關(guān)系證明線面間的關(guān)系或進(jìn)行夾角的計(jì)算。

  由于本堂課的內(nèi)容比較抽象,學(xué)生進(jìn)行應(yīng)用有一定的困難,故練習(xí)的設(shè)置降低難度,依照例題進(jìn)行鞏固練習(xí),提高放在下一課時(shí)進(jìn)行。

  4、布置作業(yè)

  書(shū)本第103頁(yè)第2小題,第104頁(yè)第1題

  【板書(shū)設(shè)計(jì)】

  根據(jù)需要把黑板設(shè)計(jì)成三大塊,在左邊設(shè)置投影,中間偏左書(shū)寫(xiě)本節(jié)課的重要知識(shí)點(diǎn)。右邊進(jìn)行例題重點(diǎn)步驟板演和學(xué)生練習(xí),結(jié)合投影,使學(xué)生根據(jù)板書(shū)達(dá)到規(guī)范格式,鞏固知識(shí)的目的。

《平面向量》說(shuō)課稿9篇 平面向量基本定理說(shuō)課稿人教b版相關(guān)文章:

《平面向量》說(shuō)課稿9篇(平面向量的說(shuō)課)


亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

                        国产精品国产三级国产三级人妇| 欧美唯美清纯偷拍| 国产精品免费视频一区| 蜜桃视频一区二区三区在线观看| 午夜日韩在线观看| 欧美激情在线一区二区| 91精品福利在线一区二区三区| 欧美精品粉嫩高潮一区二区| 99久久婷婷国产精品综合| 亚洲欧美国产毛片在线| 国产视频一区二区在线观看| 欧美一区二区三区爱爱| 午夜精品一区在线观看| 欧美一区二区三区免费大片| 久久丝袜美腿综合| 色久综合一二码| 精品视频免费看| 久久综合久色欧美综合狠狠| 五月综合激情日本mⅴ| 欧美一区二区私人影院日本| 午夜成人在线视频| 韩国三级中文字幕hd久久精品| 国产电影一区二区三区| 国产精品国产三级国产aⅴ入口| 综合分类小说区另类春色亚洲小说欧美| 国产成人精品免费在线| 911精品产国品一二三产区| 91视频免费播放| 亚洲男女毛片无遮挡| 欧美日韩国产美| 欧美tickling挠脚心丨vk| 国产一本一道久久香蕉| av高清不卡在线| 欧美区一区二区三区| 国产专区欧美精品| 久久国产夜色精品鲁鲁99| **网站欧美大片在线观看| 日韩国产欧美在线视频| 欧美日韩视频第一区| 天堂成人免费av电影一区| 亚洲一区在线视频观看| 国产一区二区福利视频| 精品少妇一区二区三区| 91亚洲精品一区二区乱码| 久久一区二区三区四区| 国产东北露脸精品视频| 欧美成va人片在线观看| 久久精品一区八戒影视| 亚洲精品一区二区三区精华液| 91精品国产美女浴室洗澡无遮挡| 国产亚洲欧美一区在线观看| 国产成人午夜精品影院观看视频| 日韩欧美激情在线| 久久婷婷色综合| 日本韩国一区二区三区| 99久久er热在这里只有精品66| 丁香激情综合国产| 亚洲一区二区精品久久av| 亚洲成人免费av| 91国偷自产一区二区三区观看| 欧美精品免费视频| 亚洲女女做受ⅹxx高潮| 亚洲成人你懂的| 国产女主播一区| 亚洲午夜精品网| 国产精品色一区二区三区| 91精品国产综合久久福利软件| 99国产欧美久久久精品| 国产欧美日韩三级| 欧美日韩一区视频| 亚洲人亚洲人成电影网站色| 九九国产精品视频| 日韩一级大片在线| 欧美视频自拍偷拍| 国产一区二区精品在线观看| 亚洲一区二区欧美激情| 亚洲视频香蕉人妖| 国产精品99精品久久免费| 亚洲国产岛国毛片在线| 国产一区二区网址| 国产成人在线看| 狠狠色丁香婷婷综合| 麻豆精品在线看| 日韩中文欧美在线| 久久久夜色精品亚洲| 91日韩在线专区| 国产精品伦一区二区三级视频| 免费人成网站在线观看欧美高清| 亚洲最新视频在线播放| 亚洲一卡二卡三卡四卡五卡| 日本不卡不码高清免费观看| 日本sm残虐另类| 亚洲精品水蜜桃| 欧美亚洲愉拍一区二区| 欧美性猛交xxxx乱大交退制版| 久久嫩草精品久久久久| 日韩精品一区二区三区三区免费| 精品女同一区二区| 欧美三级在线视频| 欧美精品一区二区在线观看| 制服丝袜国产精品| 一区二区三区四区亚洲| 91精品午夜视频| 国产精品一二三| 日韩av一级电影| gogogo免费视频观看亚洲一| 91欧美激情一区二区三区成人| 欧美日韩高清不卡| 国产片一区二区三区| 青草国产精品久久久久久| 欧美日韩一级二级三级| 亚洲一区在线电影| 久久精品国产成人一区二区三区| 日韩av不卡在线观看| 亚洲成人av资源| 国产精品久久久久久久久久久免费看| 国产精品美女久久久久aⅴ国产馆| 日本免费在线视频不卡一不卡二| 欧美电视剧在线看免费| 99精品1区2区| 亚洲国产高清不卡| 一区二区三区日韩精品| 美女视频一区二区| 欧美a一区二区| 成人欧美一区二区三区1314| xvideos.蜜桃一区二区| 日韩成人精品在线观看| 久久精品一区蜜桃臀影院| 国产欧美日韩在线| 盗摄精品av一区二区三区| 日韩一二三区视频| 91精品国产丝袜白色高跟鞋| 极品美女销魂一区二区三区免费| 91精品国产乱码久久蜜臀| 亚洲国产精品精华液2区45| 一色屋精品亚洲香蕉网站| 韩国欧美国产一区| 久久综合视频网| 夜夜精品浪潮av一区二区三区| 日本大胆欧美人术艺术动态| 亚洲大尺度视频在线观看| 久久66热偷产精品| 国产精品中文欧美| 色丁香久综合在线久综合在线观看| 国产精品一二一区| 国产精品一区二区视频| 99久久久免费精品国产一区二区| 欧美日韩中文字幕一区| 久久久久久**毛片大全| 国产精品免费av| 欧美三级电影在线看| 国产成人在线视频网址| 亚洲天堂2014| 狠狠色丁香婷综合久久| 国产精品视频九色porn| 亚洲成人一二三| 欧美老人xxxx18| 日本中文字幕一区二区视频| 欧美精品精品一区| 亚洲午夜久久久久久久久电影网| 欧美国产成人精品| 欧美一区二区三区视频免费播放| 久久久久国产精品麻豆| 国产一区视频在线看| 欧美日韩视频在线第一区| 精品久久久久久综合日本欧美| 中日韩免费视频中文字幕| 91久久人澡人人添人人爽欧美| 国精产品一区一区三区mba视频| 美女视频一区二区三区| 另类小说一区二区三区| 99久久精品国产一区| 国产一区二区不卡在线| 亚洲国产激情av| 日韩亚洲欧美在线| 久久成人av少妇免费| 美女脱光内衣内裤视频久久网站| 亚洲一级电影视频| 国产一区二区精品久久| 中文在线一区二区| 亚洲欧美色综合| 久久精品一区二区三区不卡牛牛| 亚洲另类春色国产| 久久国产免费看| a级精品国产片在线观看| 美国一区二区三区在线播放| 日韩1区2区日韩1区2区| 国产清纯美女被跳蛋高潮一区二区久久w| 国产亚洲精品中文字幕| 成人va在线观看| 97se亚洲国产综合自在线| 亚洲一区二区中文在线| 日本成人超碰在线观看| 日韩精品一区二区三区中文精品| 日精品一区二区三区| 国产三级精品视频| 亚洲一区二区三区自拍| 国产资源精品在线观看| 91精品国产综合久久久久| 欧美刺激午夜性久久久久久久|