下面是范文網小編收集的高一數學說課稿12篇 高一數學說課課件,供大家賞析。

高一數學說課稿1
各位領導和老師,大家好!我說課的內容是蘇教版必修1第1章第3節(jié)第一課時《交集、并集》,下面我想談談我對這節(jié)課的教學構想:
一、教材分析:
與傳統(tǒng)的教材處理不同,本章在學生通過觀察具體集合得到集合的補集的概念后,上升到數學內部,將“補”理解為集合間的一種“運算”。在此基礎上,通過實例,使學生感受和掌握集合之間的另外兩種運算—交和并。設計的思路從具體到理論,再回到具體,螺旋上升。集合作為一種數學語言,在后續(xù)的學習中是一種重要的工具。因此,在教學過程中要針對具體問題,引導學生恰當使用自然語言、圖形語言和集合語言來描述相應的數學內容。有了集合的語言,可以更清晰的表達我們的思想。所以,集合是整個數學的基礎,在以后的學習中有著極為廣泛的應用。
基于以上的分析制定以下的教學目標
二、教學目標:
1、理解交集與并集的概念;掌握有關集合的術語和符號,并會用它們正確表示一些簡單的集合。 能用Venn圖表示集合之間的關系;掌握兩個集合的交集、并集的求法。
2、通過對交集、并集概念的學習,培養(yǎng)學生觀察、比較、分析、概括的能力,使學生認識由具體到抽象的思維過程。
3、通過對集合符號語言的'學習,培養(yǎng)學生符號表達能力,培養(yǎng)嚴謹的學習作風,養(yǎng)成良好的學習習慣。
三、教學重點、難點:
針對以上的分析我把教學重點放在交集與并集的概念,一些集合的交集和并集的求法上。而把如何引導學生通過觀察、比較、分析、概括出交集與并集的概念作為本節(jié)的教學難點。
四、教法、學法:
針對我們師范學校學生的特點,我本著低起點、高要求、循序漸進,充分調動學生學習積極性的原則,采用“五環(huán)節(jié)教學法”。同時利用多媒體輔助教學。
下面我重點說一說教學過程
六、教學過程:
第一個環(huán)節(jié):問題情境
通過實例:學校舉辦了排球賽,08小教(2)56名同學中有12名同學參賽,后來又舉辦了田徑賽,這個班有20名同學參賽。已知兩項都參賽的有6名同學。兩項比賽中,這個班共有多少名同學沒有參加過比賽?讓學生感受到數學與我們的生活息息相關,從而激發(fā)學生的學習興趣。
學生思考后回答,然后老師加以引導,讓學生的回答達到這樣三個層次:
層次一:發(fā)現要求沒有參加比賽的人數,首先應該算出參加比賽的人數,并且知道參加比賽的人數是12+20-6,而不是12+20,因為有6人既參加排球賽又參加田徑賽。
層次二:老師引導學生利用集合的觀點再來研究這個問題。先設利用Venn圖來表示集合A,B,C.發(fā)現集合A,B的公共部分就是集合C.
層次三:引導學生發(fā)現集合C的元素的構成與集合A,B的元素的關系。學生可以發(fā)現集合C中的元素是由既參加排球比賽又參加田徑比賽的同學構成的,更進一步集合C的元素是由既屬于集合A的元素又屬于集合B的元素構成的。
通過對三個層次的探究和分析讓學生體驗數學發(fā)現和創(chuàng)造的歷程。
高一數學說課稿2
說課的內容是《對數函數》,現就教材、教法、學法、教學程序、板書五個方面進行說明。懇請在座的各位專家、老師批評指正。
一、說教材
1、教材的地位、作用及編寫意圖
《對數函數》出現在職業(yè)高中數學第一冊第四章第八節(jié)。函數是高中數學的核心,對數函數是函數的重要分支,對數函數的知識在數學和其 他許多學科中有著廣泛的應用;學生已經學習了對數、反函數以及指數函數等內容,這為過渡到本節(jié)的學習起著鋪墊作用;“對數函數”這節(jié)教材,指出對數函數和指數函數互為反函數,反映了兩個變量的相互關系,蘊含了函數與方程的數學思想與數學方法,是以后數學學習中不可缺少的部分,也是高考的必考內容。
2、教學目標的確定及依據。
依據教學大綱和學生獲得知識、培養(yǎng)能力及思想教育等方面的要求:我制定了如下教育教學目標:
(1) 知識目標:理解對數函數的概念、掌握對數函數的圖象和性質。
(2) 能力目標:培養(yǎng)學生自主學習、綜合歸納、數形結合的能力。
(3) 德育目標:培養(yǎng)學生對待知識的科學態(tài)度、勇于探索和創(chuàng)新的精神。
(4) 情感目標:在民主、和諧的教學氣氛中,促進師生的情感交流。
3、教學重點、難點及關鍵
重點:對數函數的概念、圖象和性質;
難點:利用指數函數的圖象和性質得到對數函數的圖象和性質;
關鍵:抓住對數函數是指數函數的反函數這一要領。
二、說教法
教學過程是教師和學生共同參與的過程,啟發(fā)學生自主性學習,充分調動學生的積極性、主動性;有效地滲透數學思想方法,提高學生素質。根據這樣的原則和所要完成的教學目標,并為激發(fā)學生的學習興趣,我采用如下的教學方法:
(1)啟發(fā)引導學生思考、分析、實驗、探索、歸納。
(2)采用“從特殊到一般”、“從具體到抽象”的方法。
(3)體現“對比聯系”、“數形結合”及“分類討論”的思想方法。
(4)多媒體演示法。
三、說學法
教給學生方法比教給學生知識更重要,本節(jié)課注重調動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:
(1)對照比較學習法:學習對數函數,處處與指數函數相對照。
(2)探究式學習法:學生通過分析、探索、得出對數函數的定義。
(3)自主性學習法:通過實驗畫出函數圖象、觀察圖象自得其性質。
(4)反饋練習法:檢驗知識的應用情況,找出未掌握的內容及其差距。
這樣可發(fā)揮學生的主觀能動性,有利于提高學生的各種能力。
四、說教學程序
1、復習導入
?。?)復習提問:什么是對數?如何求反函數?指數函數的圖象和性質如何?學生回答,并利用課件展示一下指數函數的圖象和性質。
設計意圖:設計的提問既與本節(jié)內容有密切關系,又有利于引入新課,為學生理解新知清除了障礙,有意識地培養(yǎng)學生分析問題的能力。
?。?)導言:指數函數有沒有反函數?如果有,如何求指數函數的反函數?它的反函數是什么?
設計意圖:這樣的導言可激發(fā)學生求知欲,使學生渴望知道問題的答案。
2、認定目標(出示教學目標)
3、導學達標
按"教師為主導,學生為主體,訓練為主線”的原則,安排師生互動活動.
(1)對數函數的概念
引導學生從對數式與指數式的關系及反函數的概念進行分析并推導出,指數函數有反函數,并且y=ax(a>0且a≠1)的反函數是 y=logax,見課件。 把函數y=logax叫做對數函數,其中a>0且a≠1。從而引出對數函數的概念,展示課件。
設計意圖:對數函數的概念比較抽象,利用已經學過的知識逐步分析,這樣引出對數函數的概念過渡自然,學生易于接受。
因為對數函數是指數函數的反函數,讓學生比較它們的定義域、值域、對應法則及圖象間的關系,培養(yǎng)學生參與意識,通過比較充分體現指數函數及對數函數的內在聯系。
(2)對數函數的圖象
提問:同指數函數一樣,在學習了函數的定義之后,我們要畫函數的圖象,應如何畫對數函數的圖象呢?讓學生思考并回答,用描點法畫圖。教師肯定,我們每學習一種新的函數都可以根據函數的解析式,列表、描點畫圖。再考慮一下,我們還可以用什么方法畫出對數函數的圖象呢?
讓學生回答,畫出指數函數關于直線y=x對稱的圖象,就是對數函數的圖象。
教師總結:我們畫對數函數的圖象,既可用描點法,也可用圖象變換法,下邊我們利用兩種方法畫對數函數的圖象。
方法一(描點法)首先列出x,y(y=log2x,y=log x)值的對應表,因為對數函數的定義域為x>0,因此可取x= , , ,1,2,4,8,請計算對應的y值,然后在坐標系內描點、畫出它們的圖象.
方法二(圖象變換法)因為對數函數和指數函數互為反函數, 圖象關于直線y=x對稱,所以只要畫出y=ax的圖象關于直線y=x對稱的曲線,就可以得到y(tǒng)=logax.的圖象。學生動手做實驗,先描出y=2x的圖象,畫出它關于直線y=x對稱的曲線,它就是y=log2x的圖象;類似的從y=( )x 的圖象畫出y=log x的圖象,再出示課件,教師加以解釋。
設計意圖:用這種對稱變換的方法畫函數的圖象,可以加深和鞏固學生對互為反函數的兩個函數之間的認識,便于將對數函數的`圖象和性質與指數函數的圖象和性質對照,但使用描點法畫函數圖象更為方便,兩種方法可同時進行,分析畫法之后,可讓學生自由選擇畫法。
這樣可以充分調動學生自主學習的積極性。
(3)對數函數的性質
在理解對數函數定義的基礎上,掌握對數函數的圖象和性質是本節(jié)的重點,關鍵在于抓住對數函數是指數函數的反函數這一要領,講對數函數的性質,可先在同一坐標系內畫出上述兩個對數函數的圖象,根據圖象讓學生列表分析它們的圖象特征和性質,然后出示課件,教師補充。
作了以上分析之后,再分a>1與0<a<1兩種情況列出對數函數圖象和性質表,體現了從“特殊到一般”、“從具體到抽象”的方法。出示課件并進行詳細講解,把對數函數圖象和性質列成一個表以便讓學生對比著記憶。
設計意圖:這種講法既嚴謹又直觀易懂,還能讓學生主動參與教學過程,對培養(yǎng)學生的創(chuàng)新能力有幫助,學生易于接受易于掌握,而且利用表格,可以突破難點。
由于對數函數和指數函數互為反函數,它們的定義域與值域正好互換,為了揭示這兩種函數之間的內在聯系,列出指數函數與對數函數對照表(見課件)
設計意圖:通過比較對照的方法,學生更好地掌握兩個函數的定義、圖象和性質,認識兩個函數的內在聯系,提高學生對函數思想方法的認識和應用意識。
4、鞏固達標(見課件)
這一訓練是為了培養(yǎng)學生利用所學知識解決實際問題的能力,通過這個環(huán)節(jié)學生可以加深對本節(jié)知識的理解和運用,并從講解過程中找出所涉及的知識點,予以總結。充分體現“數形結合”和“分類討論”的思想。
5、反饋練習(見課件)
習題是對學生所學知識的反饋過程,教師可以了解學生對知識掌握的情況。
6、歸納總結(見課件)
引導學生對主要知識進行回顧,使學生對本節(jié)有一個整體的把握,因此,從三方面進行總結:對數函數的概念、對數函數的圖象和性質、比較對數值大小的方法。
7、課外作業(yè) :(1)完成P178 A組1、2、3題
?。?)當底數a>1與0<a<1時,底數不同,對數函數圖象有什么持點?
五、說板書
板書設計為表格式(見課件),這樣的板書簡明清楚,重點突出,加深學生對圖象和性質的理解和掌握,便于記憶,有利于提高教學效果。
高一數學說課稿3
各位領導、各位老師:
大家好!
今天我說課的題目是《兩角差的余弦公式》。我計劃從教材背景、教學目標、教學方法、教學過程、教學評價等方面來談談我對本節(jié)課的理解。
背景分析
1、教材所處的地位和作用:
《兩角差的余弦公式》是新課標人教版數學必修四第三章第一課時的教學內容,是本模塊第一章《三角函數》和第二章《平面向量》相關知識的延續(xù)和拓展。其中心任務是通過已學知識,探索建立兩角差的余弦公式。它不僅是前面已學的誘導公式的推廣,也是后面其它和(差)角公式推導的基礎和核心,具有承前啟后的作用,是本章的重點內容之一。
2、重點,難點以及確定的依據:
對本節(jié)課來說,學生最大的困惑在于如何得到公式.所以,
本節(jié)課的教學重點是:兩角差的余弦公式的探究和應用;
教學難點是:兩角差的余弦公式的由來及證明;
引導學生通過主動參與,獨立探索。
教學目標設計
(1)知識與技能:
本節(jié)課的知識技能目標定位在公式的向量法證明和應用上;學會運用分類討論思想完善證明;學會正用、逆用、變用公式;學會運用整體思想,抓住公式的本質.在新舊知識的沖撞過程中,讓學生自主地對知識進行重組、構建,形成屬于自己的知識結構體系.
(2)過程與方法:
創(chuàng)設問題情景,調動學生已有的認知結構,激發(fā)學生的問題意識,展開提出問題、分析問題、解決問題的學習活動,讓學生體會從“特殊”到“一般”的探究過程;在探究過程中體會化歸、數形結合等數學思想;在公式的證明過程中,培養(yǎng)學生反思的好習慣;在公式的理解記憶過程中,讓學生發(fā)現數學中的簡潔、對稱美;在公式的運用過程中,培養(yǎng)學生嚴謹的思維習慣和自我糾錯能力.
(3)情感、態(tài)度與價值觀:
體驗科學探索的過程,鼓勵學生大膽質疑、大膽猜想,培養(yǎng)學生的“問題意識”,使學生感受科學探索的樂趣,激勵勇氣,培養(yǎng)創(chuàng)新精神和良好的團隊合作意識. 通過對猜想的驗證,對公式證明的完善,培養(yǎng)學生實事求是的科學態(tài)度和科學精神.
教法設計
1、學情分析:
學生剛剛學習了同角三角函數的變換及平面向量的知識,對用舉反例推翻猜想、運用單位圓、用向量解決三角問題已經有了一定的基礎,但還遠未達到綜合運用這些方法自主探究和證明的水平.
教學手段:
(1)從知識的認知程序上看,老師看問題從整體到局部,而學生卻是從局部到整體。本節(jié)課嘗試將“帶著知識走向學生”的接受式教學模式轉變?yōu)椤皫е鴮W生走向知識”的探究式教學模式,充分尊重學生的主體地位.
(2)本節(jié)課的教法采用了“一個主題兩種教學”的設計模式.一個主題:公式探究與應用,兩種教學:顯形教學(知識能力教學)、隱性教學(情商培養(yǎng)),實踐兩種教學相互促進的人性化教學理念.
(3)在課堂上營造民主、開放、平等的教學氛圍,注重教學評價的多元性,將簡單的結果評價上升為對過程的評價;將一味的知識評價拓展為能力評價,突出學生的主體性,實現顯形教學與隱性教學的雙重評價,為全面發(fā)展學生打下基礎.
(4)利用幾何畫板,通過計算機技術,給學生提供一種驗證猜想合理性的途徑. (教學媒體設計)
課堂結構設計:
引入課題,提出猜想,實驗探究,嚴謹證明,例題訓練,課堂小結
教學過程設計
1、引入課題:
例:如圖所示,一個斜坡的高為6m,斜坡的水平長度為8m,已知作用在物體上的力F與水平方向的夾角為60°,且大小為10N ,在力F的作用下物體沿斜坡運動了3m,求力F作用在物體上的功W.
解: W =
= 30.
提問:1、解決問題需要求什么?
2、你能找到哪些與有關的條件?
3、能否利用這些條件求出?如果能,提出你的猜想.
4、怎樣檢驗這些猜想是否正確?
【設計意圖】生活實例引入,體現數學與實際生活的聯系,也與物理(功的定義)、哲學(透過現象看本質)等相關學科相聯系,增強學生的應用意識,激發(fā)學生的學習熱情,同時也讓學生體會數學知識的產生、發(fā)展過程.
2、提出猜想:
從特殊情況去猜測公式的結構形式.
令
令
分析:可見,我們的公式的形式應該與均有關系?他們之間存在怎樣的代數關系呢?請同學們根據下表中數據,相互交流討論,提出你的猜想.
用具體值檢驗猜想的合理性.
令則=
三角函數
三角函數值
猜想:
【設計意圖】鼓勵學生發(fā)揮想象力,大膽猜測,然后再去驗證其合理性,增強學生探索問題、挑戰(zhàn)困難的勇氣.
3、實驗探究:
【設計意圖】讓學生用幾何畫板進行數學實驗, 激起學生的好奇心和探究欲望, 使學生體會到數學的系統(tǒng)演繹性和實驗歸納性的兩個側面.
4、嚴謹證明:
(利用向量)
前一章我們剛剛學習完向量,并用向量知識解決了相關的幾何問題,這里,我們能否用向量知識來推導兩角差的余弦公式呢?我們來仔細觀察猜想的結構,我們在什么地方見到過類似結構?在向量部分,求角的余弦有什么方法嗎?
(學生:向量的數量積!)
證明:在平面直角坐標系xOy內作單位圓O,以Ox為始邊作角,它們終邊與單位圓O的交點分別為A、B,則:
=, =
=
∴= (0≤≤)
思考:1、作為兩向量的夾角,有沒有限制條件?
2、如果不在[0,]這個區(qū)間內,我們的結論還會成立嗎?怎樣給出證明?(引導學生找到與夾角之間的關系)
【設計意圖】讓學生經歷用向量知識解出一個數學問題的過程,體會向量方法在數學探究過程中的簡潔性。
思考:1、作為兩向量的夾角,有沒有限制條件?
2、如果不在[0,]這個區(qū)間內,我們的結論還會成立嗎?怎樣給出證明?(引導學生找到與夾角之間的關系)
推廣完善:令為、的夾角,
則
無論哪種情況,都有
小結:兩角差的余弦公式:
(其中為任意角,簡記為)
思考:請同學們仔細觀察一下公式的結構,說說公式的結構有什么特點?應怎樣記憶?(對學生的回答給予及時肯定)
【設計意圖】引導學生關注兩個向量的夾角θ與α-β的聯系與區(qū)別,并通過觀察和討論,增強學生用數形結合、分類討論的方法解決問題的意識,感受數學思維的嚴謹性.
(介紹單位圓的三角函數線法)
除了以上的證明方法,是否還有其它證法呢?
我們發(fā)現,這里涉及的`是三角函數,是這個角的余弦問題,那我們還能不能考慮在單位圓里用三角函數線來推導呢?
請同學們課后自己在單位圓中畫出、,并考慮如何用角的正弦線、余弦線來表示的余弦線?
這個問題作為課后思考題,請同學們課下相互討論,共同探索。
【設計意圖】根據教學實際,對教材進行適當安排,把單位圓三角函數線證法留作課后學生思考,為學生的課后探討留有空間。
5、例題訓練:
1、解決引例中的問題.
2、P127練習:已知,求.
(運用公式時應根據角的范圍,正確確定兩角正、余弦值的范圍)
公式的逆用:.
4、公式活用:.
【設計意圖】例1讓學生運用所學解決實際問題;例2利用變式突破學生在運用公式過程中的易錯點;例3對逆用公式解題加深認識;例4活用公式,加深學生對公式中兩角形式變化的認識,強化整體思想。
6:課堂小結:
公式探索的一般步驟;公式的結構和功能;公式的運用應注意的問題。
7、作業(yè):
P127 練習1、2、3;
.
【設計意圖】讓學生通過自己小結,反思學習過程,加深對公式的推導和應用過程的理解,促進知識的內化;然后用作業(yè)鞏固本節(jié)課所學知識。
(附:板書設計)
§3.1.1 兩角差的余弦公式
一、公式
二、證明
引例:
例2:
例3:
4:
小結:
教學評價分析
診斷性評價:
1.按常規(guī),學生很可能想到先探究兩角和的正弦公式,怎樣想到先研究兩角差的余弦公式是一個難點(但非重點),教學時可以直接提出研究兩角差的余弦公式。但后面補充老教材的證明方法,讓學生明白和與差內在的聯系性與統(tǒng)一性,努力讓學習過程自然。
2.盡管教材在前面的習題中,已經為用向量法證明兩角差的余弦公式做了鋪墊,多數學生仍難以想到.教師需要引導學生,聯想到向量的數量積公式和單位圓上點的坐標特點,努力使數學思維顯得自然、合理。
3.用向量的數量積公式證明兩角差的余弦公式時,學生容易犯思維不嚴謹的錯誤,教學時需要引導學生搞清楚兩角差與相應向量的夾角的聯系與區(qū)別。
預期效果:
1、讓學生在掌握兩角差的余弦公式探究方法的基礎上,能夠自我總結形成公式探究的一般方法。
2、激發(fā)學生的探究欲望,能夠獨立或合作提出推導其它三角恒等式的方案,形成對三角恒等變換的本質認識,加深對靈活運用公式的理解。
3、培養(yǎng)學生的“問題意識”,在探索的過程中學會將“知識問題化”,大膽、合理地提出猜測,通過證明、完善,最終達到將“問題知識化”的目的.
高一數學說課稿4
一、教材分析
函數的單調性是函數的重要性質.從知識的網絡結構上看,函數的單調性既是函數概念的延續(xù)和拓展,又是后續(xù)研究指數函數、對數函數、三角函數的單調性等內容的基礎,在研究各種具體函數的性質和應用、解決各種問題中都有著廣泛的應用.函數單調性概念的建立過程中蘊涵諸多數學思想方法,對于進一步探索、研究函數的其他性質有很強的啟發(fā)與示范作用.
根據函數單調性在整個教材內容中的地位與作用,本節(jié)課教學應實現如下教學目標:
知識與技能使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;
過程與方法引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養(yǎng)學生發(fā)現問題、分析問題、解決問題的能力。
情感態(tài)度與價值觀在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養(yǎng)學生善于觀察、勇于探索的良好習慣和嚴謹的科學態(tài)度。
根據上述教學目標,本節(jié)課的教學重點是函數單調性的概念形成和初步運用.雖然高一學生已經有一定的抽象思維能力,但函數單調性概念對他們來說還是比較抽象的。因此,本節(jié)課的學習難點是函數單調性的概念形成。
二、教法學法
為了實現本節(jié)課的教學目標,在教法上我采取了
1、通過學生熟悉的實際生活問題引入課題,為概念學習創(chuàng)設情境,拉近數學與現實的距離,激發(fā)學生求知欲,調動學生主體參與的積極性。
2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念。
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達。
在學法上我重視了:
1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。
2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養(yǎng)學生發(fā)現問題、研究問題和分析解決問題的能力。
三、教學過程
函數單調性的概念產生和形成是本節(jié)課的難點,為了突破這一難點,在教學設計上采用了下列四個環(huán)節(jié)。
?。ㄒ唬﹦?chuàng)設情境,提出問題
?。▎栴}情境)(播放中央電視臺天氣預報的音樂)。如圖為某地區(qū)20xx年元旦這一天24小時內的氣溫變化圖,觀察這張氣溫變化圖:
[教師活動]引導學生觀察圖象,提出問題:
問題1:說出氣溫在哪些時段內是逐步升高的或下降的?
問題2:怎樣用數學語言刻畫上述時段內“隨著時間的增大氣溫逐漸升高”這一特征?
[設計意圖]問題是數學的心臟,問題是學生思維的開始,問題是學生興趣的開始。這里,通過兩個問題,引發(fā)學生的進一步學習的好奇心。
(二)探究發(fā)現建構概念
[學生活動]對于問題1,學生容易給出答案。問題2對學生來說較為抽象,不易回答。
[教師活動]為了引導學生解決問題2,先讓學生觀察圖象,通過具體情形,例如,“t1=8時,f(t1)=1,t2=10時,f(t2)=4”這一情形進行描述.引導學生回答:對于自變量8<10,對應的函數值有1<4。舉幾個例子表述一下。然后給出一個鋪墊性的問題:結合圖象,請你用自己的語言,描述“在區(qū)間[4,14]上,氣溫隨時間增大而升高”這一特征。
在學生對于單調增函數的特征有一定直觀認識時,進一步提出:
問題3:對于任意的t1、t2∈[4,16]時,當t1 ?。╰1) [學生活動]通過觀察圖象、進行實驗(計算機)、正反對比,發(fā)現數量關系,由具體到抽象,由模糊到清晰逐步歸納、概括、抽象出單調增函數概念的本質屬性,并嘗試用符號語言進行初步的表述。 [教師活動]為了獲得單調增函數概念,對于不同學生的表述進行分析、歸類,引導學生得出關鍵詞“區(qū)間內”、“任意”、“當時,都有”。告訴他們“把滿足這些條件的函數稱之為單調增函數”,之后由他們集體給出單調增函數概念的數學表述.提出: 問題4:類比單調增函數概念,你能給出單調減函數的概念嗎? 最后完成單調性和單調區(qū)間概念的整體表述。 [設計意圖]數學概念的形成來自解決實際問題和數學自身發(fā)展的`需要。但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發(fā),經歷“數學化”、“再創(chuàng)造”的活動過程。剛升入高一的學生已經具備了一定的幾何形象思維能力,但抽象思維能力不強。從日常的描述性語言概念升華到用數學符號語言精確刻畫概念是本節(jié)課的難點。 ?。ㄈ┳晕覈L試運用概念 1.為了理解函數單調性的概念,及時地進行運用是十分必要的。 [教師活動]問題5:(1)你能找出氣溫圖中的單調區(qū)間嗎?(2)你能說出你學過的函數的單調區(qū)間嗎?請舉例說明。 [學生活動]對于(1),學生容易看出:氣溫圖中分別有兩個單調減區(qū)間和一個單調增區(qū)間.對于(2),學生容易舉出具體函數如:f(x)=—2x+2,f(x)=x2+2x—3,f(x)=1/x,并畫出函數的草圖,根據函數的圖象說出函數的單調區(qū)間。 [教師活動]利用實物投影儀,投影出學生畫出的草圖和標出的單調區(qū)間,并指出學生回答問題時可能出現的錯誤,如:在敘述函數的單調區(qū)間時寫成并集。 [設計意圖]在學生已有認知結構的基礎上提出新問題,使學生明了,過去所研究的函數的相關特征,就是現在所學的函數的單調性,從而加深對函數單調性概念的理解。 2.對于給定圖象的函數,借助于圖象,我們可以直觀地判定函數的單調性,也能找到單調區(qū)間.而對于一般的函數,我們怎樣去判定函數的單調性呢? [教師活動]問題6:證明在區(qū)間(0,+∞)上是單調減函數。 [學生活動]學生相互討論,嘗試自主進行函數單調性的證明,可能會出現不知如何比較f(x1)與f(x2)的大小、不會正確表述、變形不到位或根本不會變形等困難。 [教師活動]教師深入學生中,與學生交流,了解學生思考問題的進展過程,投影學生的證明過程,糾正出現的錯誤,規(guī)范書寫的格式。 [學生活動]學生自我歸納證明函數單調性的一般方法和操作流程:取值作差變形定號判斷。 [設計意圖]有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此.利用學生自己提出的問題,讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究。 ?。ㄋ模┗仡櫡此忌罨拍?/p> [教師活動]給出一組題: 1、定義在R上的單調函數f(x)滿足f(2)>f(1),那么函數f(x)是R上的單調增函數還是單調減函數? 2、若定義在R上的單調減函數f(x)滿足f(1+a) [學生活動]學生互相討論,探求問題的解答和問題的解決過程,并通過問題,歸納總結本節(jié)課的內容和方法。 [設計意圖]通過學生的主體參與,使學生深切體會到本節(jié)課的主要內容和思想方法,從而實現對函數單調性認識的再次深化。 [教師活動]作業(yè)布置: ?。?)閱讀課本P34-35例2 ?。?)書面作業(yè): 必做:教材P431、7、11 選做:二次函數y=x2+bx+c在[0,+∞)是增函數,滿足條件的實數的值唯一嗎? 探究:函數y=x在定義域內是增函數,函數有兩個單調減區(qū)間,由這兩個基本函數構成的函數的單調性如何?請證明你得到的結論。 [設計意圖]通過兩方面的作業(yè),使學生養(yǎng)成先看書,后做作業(yè)的習慣?;诤瘮祮握{性內容的特點及學生實際,對課后書面作業(yè)實施分層設置,安排基本練習題、鞏固理解題和深化探究題三層。學生完成作業(yè)的形式為必做、選做和探究三種,使學生在完成必修教材基本學習任務的同時,拓展自主發(fā)展的空間,讓每一個學生都得到符合自身實踐的感悟,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生自主發(fā)展、合作探究的學習氛圍的形成。 四、教學評價 學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。教師應當高度重視學生學習過程中的參與度、自信心、團隊精神、合作意識、獨立思考習慣的養(yǎng)成、數學發(fā)現的能力,以及學習的興趣和成就感。學生熟悉的問題情境可以激發(fā)學生的學習興趣,問題串的設計可以讓更多的學生主動參與,師生對話可以實現師生合作,適度的研討可以促進生生交流,以及團隊精神,知識的生成和問題的解決可以讓學生感受到成功的喜悅,縝密的思考可以培養(yǎng)學生獨立思考的習慣。讓學生在教師評價、學生評價以及自我評價的過程中體驗知識的積累、探索能力的長進和思維品質的提高,為學生的可持續(xù)發(fā)展打下基礎。 一、說教材 ?。?)說教材的內容和地位 本次說課的內容是人教版高一數學必修一第一單元第一節(jié)《集合》(第一課時)。集合這一課里,首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握以及使用數學語言的基礎。從知識結構上來說是為了引入函數的定義。因此在高中數學的模塊中,集合就顯得格外的舉足輕重了。 ?。?)說教學目標 根據教材結構和內容以及教材地位和作用,考慮到學生已有的認知結構與心理特征,依據新課標制定如下教學目標: 1.知識與技能:掌握集合的基本概念及表示方法。了解“屬于”關系的意義,掌握集合元素的特征。 2.過程與方法:通過情景設置提出問題,揭示課題,培養(yǎng)學生主動探究新知的習慣,并通過“自主、合作與探究”實現“一切以學生為中心”的理念。 3.情感態(tài)度與價值觀:感受數學的人文價值,提高學生的學習數學的興趣,由集合的學習感受數學的簡潔美與和諧統(tǒng)一美。同時通過自主探究領略獲取新知識的喜悅。 ?。?)說教學重點和難點 依據課程標準和學生實際,我確定本課的教學重點為教學重點:集合的基本概念及元素特征。 教學難點:掌握集合元素的.三個特征,體會元素與集合的屬于關系。 二、說教法和學法 接下來則是說教法、學法。 教法與學法是互相聯系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來相應的學法,以遵循啟發(fā)性原則為出發(fā)點,就本節(jié)課而言,我采用“生活實例與數學實例”相結合,“師生互動與課堂布白”相輔助的方法。通過不同層次的練習體驗,憑借有趣、實用的教學手段,突出重點,突破難點。然而,學生是學習的主人,以學生為主體,創(chuàng)造條件讓學生參與探究活動,不僅提高了學生探究能力,更讓學生獲得學習的技能和激發(fā)學生的學習興趣。因此,本次活動采用的學法有自主探究、觀察發(fā)現、合作交流、歸納總結等。 總之,不管采取什么教法和學法,每節(jié)課都應不斷研究學生的學習心理機制,不斷優(yōu)化教師本身的教學行為,自始至終以學生為主體,為學生創(chuàng)造和諧的課堂氛圍。 三、說教學過程 接著我來說一下最重要的部分,本節(jié)課的教學過程: 這節(jié)課的流程主要分為六個環(huán)節(jié):創(chuàng)設情境(引入目標)、自主探究(感知目標)、討論辨析(理解目標)、變式訓練(鞏固目標)、課堂小結(自我評價)、作業(yè)布置(反饋矯正)。 上述六個環(huán)節(jié)由淺入深,層層遞進. 多層次、多角度地加深對概念的理解. 提高學生學習的興趣,以達到良好的教學效果。 第一環(huán)節(jié):創(chuàng)設問題情境,引入目標 課堂開始我將提出兩個問題: 問題1:班級有20名男生,16名女生,問班級一共多少人? 問題2:某次運動會上,班級有20人參加田賽,16人參加徑賽,問一共多少人參加比賽? 這里我會讓學生以小組討論的形式進行討論問題,事實上小組合作的形式是本節(jié)課主要形式。 待學生討論完畢以后我將作歸納總結:問題2已無法用學過的知識加以解釋,這是與集合有關的問題,因此需用集合的語言加以描述(同時我將板書標題:集合)。 安排這一過程的意圖是為了從實際問題引入,讓學生了解數學來源于實際。從而激發(fā)學生參與課堂學習的欲望。 很自然地進入到第二環(huán)節(jié):自主探究讓學生閱讀教材,并思考下列問題: ?。?)有那些概念? ?。?)有那些符號? ?。?)集合中元素的特性是什么? 安排這一過程的意圖是給學生提供活動空間,讓主體主動建構自己的知識結構。培養(yǎng)學生的探究能力。 讓學生自主探究之后將進入第三環(huán)節(jié):討論辨析 小組合作探究(1) 讓學生觀察下列實例 ?。?)1~20以內的所有質數; ?。?)所有的正方形; ?。?)到直線 的距離等于定長 的所有的點; ?。?)方程 的所有實數根; 通過以上實例,辨析概念: ?。?)集合含義:一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。而 集合中的每個對象叫做這個集合的元素。 (2)表示方法:集合通常用大括號{ }或大寫的拉丁字母A,B,C?表示,而元素用小 寫的拉丁字母a,b,c?表示。 小組合作探究(2)——集合元素的特征 問題3:任意一組對象是否都能組成一個集合?集合中的元素有什么特征? 問題4:某單位所有的“帥哥”能否構成一個集合?由此說明什么? 集合中的元素必須是確定的 問題5:在一個給定的集合中能否有相同的元素?由此說明什么? 集合中的元素是不重復出現的 問題6:咱班的全體同學組成一個集合,調整座位后這個集合有沒有變化?由此說明什么? 集合中的元素是沒有順序的 我如此設計的意圖是因為:問題是數學的心臟,感受問題是學習數學的根本動力。 小組合作探究(3)——元素與集合的關系 問題7:設集合A表示“1~20以內的所有質數”,那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中? 問題8:如果元素a是集合A中的元素,我們如何用數學化的語言表達? a屬于集合A,記作a∈A 問題9:如果元素a不是集合A中的元素,我們如何用數學化的語言表達? a不屬于集合A,記作a?A 小組合作探究(4)——常用數集及其表示方法 問題10:自然數集,正整數集,整數集,有理數集,實數集等一些常用數集,分別用什么符號表示? 自然數集(非負整數集):記作 N 正整數集:記作 N或 N? 整數集:記作 Z 有理數集:記作 Q 實數集:記作 R 設計意圖:由于不同的人對同一問題有不同的體驗和理解。讓學生通過合作交流相互得到啟發(fā),從而不斷完善自己的知識結構。 第四環(huán)節(jié):理論遷移 變式訓練 1.下列指定的對象,能構成一個集合的是 ?、?很小的數 ?、?不超過30的非負實數 ?、?直角坐標平面內橫坐標與縱坐標相等的點 ?、?π的近似值 ?、?所有無理數 A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④ 第五環(huán)節(jié):課堂小結,自我評價 1.這節(jié)課學習的主要內容是什么? 2.這節(jié)課主要解釋了什么數學思想? 設計意圖:引導學生對所學知識、思想方法進行小結,形成知識系統(tǒng).教師用激勵性的語言加一點評,讓學生的思想敞亮的發(fā)揮出來。 第六環(huán)節(jié):作業(yè)布置,反饋矯正 1.必做題 課本習題1.1—1、2、3。 2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實數a 的值。 設計意圖:充分考慮到學生的差異性,讓所有學生都有成功的情感體驗。 四、板書設計 好的板書就像一份微型教案,為了讓學生直觀易懂的看筆記,板書應設計得有條理性、概括性、指導性,所以我設計的板書如下: 集 合 1.集合的概念 4.范例研究 2.集合元素的特征 ?。▽W生板演) 3.常見集合的表示? 以上,我是從教材、教法和學法、教學過程和板書設計四個方面對本課進行了說明,我的說課到此結束,謝謝各位評委老師,并請各位評委老師指正! 本節(jié)課是高中數學第二冊第七章《曲線和圓的方程》第五節(jié)《曲線和方程》,這是一節(jié)教學研討課,是在大力提倡改革課堂教學模式、提高課堂效益、開發(fā)學生智力等多方面能力的前提下開設的,目的是努力尋求一種全新的課堂教學模式,能夠讓信息技術和數學課本知識有效的融合在一起,讓學生知道,學習數學,不僅僅是做題目,而且是研究題目,提高了學生的學習數學的興趣。 一、教材分析 《平面動點的軌跡》這部分內容從理論上揭示了幾何中的“形”與代數中的“數”相統(tǒng)一的關系,為“作形判數”與“就數論形”的相互轉化開辟了途徑,同時也體現解析幾何的基本思想。軌跡問題具有深厚的生活背景,求平面動點的軌跡方程涉及集合、方程、三角平面幾何等基礎知識,其中滲透著運動與變化、數形結合的等思想,是中學數學的重要內容,也是歷年高考數學考查的重點之一。 二、對數學目標的闡述 “以知識為載體,注重學生的能力、良好的意志品質及合作學習精神的培養(yǎng)”是本教學設計中貫穿始終的一個重要教學理念。為此本課的知識目標設定為三條: ?。?)了解解析幾何的基本思想、明確它所研究的基本問題 ?。?)了解用坐標法研究幾何問題的有關知識和觀點 ?。?)初步掌握根據已知條件求曲線方程的方法,同時進一步加深理解“曲線的方程、方程的曲線”的概念。 三、對學生能力目標的培養(yǎng) 本節(jié)課的設計著眼點是讓學生集體參與、主動參與,培養(yǎng)學生動手、動腦的能力,鼓勵多向思維、積極活動、勇于探索。知識的學習和能力的提高是同步的,從本課的設計不難看出對學生能力目標是:通過自我思考、同桌交流、師生互議、實際探究等課堂活動,獲取知識。同時,培養(yǎng)學生探究學習、合作學習的意識,強化數形結合、化歸與轉化等數學思想,提高分析問題、解決問題的能力。 四、對學生個性品質和情感教育的培養(yǎng) 設計者試圖利用動畫演示軌跡的形成過程,使課堂氣氛活躍,讓學生感受動點軌跡的動態(tài)美,使課堂教學內容形象化,從而激發(fā)學生學習數學的興趣和學好教學的信心。而鼓勵學生積極思考、勇于探索,培養(yǎng)學生良好的意志品質,樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣則是本節(jié)課要達成的個性品質和情感目標。 五、關于教學方法與教學法手段的選用 新課程強調教師要調整自己的角色,改變傳統(tǒng)的教育方式,教師要由傳統(tǒng)意義上知識的傳授者和學生的管理者,改變成為以學生為中心,讓學生真正成為學習的主人而不是知識的奴隸,基于此,根據本節(jié)課的教學內容和學生的實際水平,采用的`是引導發(fā)現法和計算機軟件——《幾何畫板》實驗輔助教學。 六、、關于教學程序的設計 1、創(chuàng)設情景,引入課題 平面解析幾何的核心是“坐標法”,用代數的方法研究幾何圖的性質。主要包括兩個部分:求曲線的方程;通過研究方程研究曲線的性質。在傳統(tǒng)的教學中,動點并不動?!稁缀萎嫲濉返奶攸c是“動”??梢栽趧討B(tài)中觀察數學現象,探究幾何圖形的性質。在《幾何畫板》支持下,“動點”真的動起來了。在動態(tài)中觀察,觀察變動中不變的規(guī)律觸及到問題的本質,可以更好地讓學生參與到教學過程中來。讓學生動手操作,發(fā)現數學規(guī)律。 例 1、已知點P是圓上的一個動點,點A是X軸上的定點,坐標是(12、0)當點P在圓上運動時,線段PA的中點M的軌跡是什么? 第一步:讓學生借助畫板動手探究軌跡 第二步:要求學生求出軌跡方程、驗證軌跡 解法一:設M(x,y)則,由點p是圓上的點得,,化簡得: 2、問題提出,引入新課 例2、已知B是定圓A內一定點,C是圓上的動點,L是線段BC的垂直平分線。交點為P,M為L與直徑CD的交點,當點C在圓上運動時,探索直線L上哪個點的運行時橢圓? 設計意圖:借助數學實驗,把原本屬于教師行為的設疑激趣還原于學生,讓學生自己在實踐過程中發(fā)現疑問,更容易激發(fā)學生學習的熱情,促使他們主動發(fā)現、主動學習。 第一步:分解動作,向學生提出幾個問題: 問題1:當點C在圓上運動時,直線 圍成一個橢圓,上哪個點在這個橢圓上?(為什么)注意觀察點P與點M 問題2:CD是圓A的直徑,直線L與CD交于M,求M的軌跡方程。 問題3、改變點B的位置,當點B在圓外時,你的結論該做怎樣的修改呢? 學生活動:第一步:利用網絡平臺展示學生得到的軌跡(教師有意識的整合在一起) 第二步:課堂完成學生歸納出來的問題1,問題2和3課后完成。 整個教學過程,體現了四個統(tǒng)一:既學習書本知識與投身實踐的統(tǒng)一、書本學習與現代信息技術學習的統(tǒng)一、書本知識與資源拓展的統(tǒng)一、課堂學習與課外實踐的統(tǒng)一。本節(jié)課學生精神飽滿、興趣濃厚、合作積極,與教師保持良好的互動,還不時產生一些爭執(zhí),給我提出了一些新的問題,折射出我不足的方面,促進了我的進步與提高,師生間的教與學就像一面鏡子,互相折射,共同進步。 通過本節(jié)課的學習,學生不僅掌握了動點軌跡的求法,而且通過作圖掌握了《幾何畫板》這個軟件,通過方程的推導,更加熟悉了動點軌跡的求法,而且通過作圖掌握了幾何的基本思想“以數論形,數形結合”,提高了運用數形結合、等價轉化等數學思想方法解決問題的能力,通過思路的探索和軌跡方程的推導,學生的思維品質得以優(yōu)化,學會辯證地看待問題,享受了數學的美。 一、教材分析。 1、教學目標: ?。?)理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想; ?。?)培養(yǎng)學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。 ?。?)通過對等差數列的研究,培養(yǎng)學生主動探索、勇于發(fā)現的求知精神;養(yǎng)成細心觀察、認真分析、善于總結的良好思維習慣。 2、教學重點和難點: ?。?)等差數列的概念。 ?。?)等差數列的通項公式的推導過程及應用。用不完全歸納法推導等差數列的通項公式。 二、教法分析。 采用啟發(fā)式、討論式以及講練結合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現、分析和解決問題。 三、教學程序。 本節(jié)課的教學過程由:(一)復習引入;(二)新課探究;(三)應用例解;(四)反饋練習;(五)歸納小結;(六)布置作業(yè),六個教學環(huán)節(jié)構成。 ?。ㄒ唬土曇耄?/p> 1、全國統(tǒng)一鞋號中成年女鞋的各種尺碼(表示鞋底長,單位是cm)分別是21,22,23,24,25。 2、某劇場前10排的座位數分別是:38,40,42,44,46,48,50,52,54,56。 3、某長跑運動員7天里每天的訓練量(單位:m)是:7500,8000,8500,9000,9500,10000,10500。 共同特點:從第2項起,每一項與前一項的差都等于同一個常數。 ?。ǘ?新課探究。 1、給出等差數列的概念: 如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列, 這個常數叫做等差數列的公差,通常用字母d來表示。強調: ?。?)“從第二項起”滿足條件; ?。?)公差d一定是由后項減前項所得; ?。?)公差可以是正數、負數,也可以是0。 2、推導等差數列的通項公式:若等差數列{an }的首項是 ,公差是d, 則據其定義可得:— =d 即: = +d;– =d 即: = +d = +2d;– =d 即: = +d = +3d……進而歸納出等差數列的通項公式:= +(n—1)d 此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹的學習態(tài)度,在這里向學生介紹另外一種求數列通項公式的辦法——————迭加法:– =d;– =d;– =d……– =d。 將這(n—1)個等式左右兩邊分別相加,就可以得到 – = (n—1) d即 = +(n—1) d 當n=1時,上面等式兩邊均為 ,即等式也是成立的,這表明當n∈ 時上面公式都成立,因此它就是等差數列{an }的通項公式。 接著舉例說明:若一個等差數列{ }的首項是1,公差是2,得出這個數列的通項公式是: =1+(n—1)×2 , 即 =2n—1 以此來鞏固等差數列通項公式運用 ?。ㄈ门e例。 這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的 、d、n、 這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。 例1 : ?。?)求等差數列8,5,2,…的第20項; ?。?)—401是不是等差數列—5,—9,—13,…的項?如果是,是第幾項? 第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式。 例2: 在等差數列{an}中,已知 =10, =31,求首項 與公差d。 在前面例1的基礎上將例2當作練習作為對通項公式的`鞏固。 例3: 梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。 (四)反饋練習。 1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。 2、若數列{ } 是等差數列,若 = k ,(k為常數)試證明:數列{ }是等差數列。 此題是對學生進行數列問題提高訓練,學習如何用定義證明數列問題同時強化了等差數列的概念。 ?。ㄎ澹w納小結 。(由學生總結這節(jié)課的收獲) 1、等差數列的概念及數學表達式。 強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數 2、等差數列的通項公式 = +(n—1) d會知三求一 ?。?布置作業(yè)。 1、必做題:課本P114 習題3。2第2,6 題。 2、選做題:已知等差數列{ }的首項 = —24,從第10項開始為正數,求公差d的取值范圍。(目的:通過分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求) 四、板書設計。 在板書中突出本節(jié)重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。 一、說教材 1、教材的地位和作用 《集合的概念》是人教版第一章的內容(中職數學)。本節(jié)課的主要內容:集合以及集合有關的概念,元素與集合間的關系。初中數學課本中已現了一些數和點的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學生并不清楚“集合”在數學中的含義,集合是一個基礎性的概念,也是也是中職數學的開篇,是我們后續(xù)學習的重要工具,如:用集合的語言表示函數的定義域、值域、方程與不等式的解集,曲線上點的集合等。通過本章節(jié)的學習,能讓學生領會到數學語言的簡潔和準確性,幫助學生學會用集合的語言描述客觀,發(fā)展學生運用數學語言交流的能力。 2、 教學目標 ?。?)知識目標: a、通過實例了解集合的含義,理解集合以及有關概念; b、初步體會元素與集合的“屬于”關系,掌握元素與集合關系的`表示方法。 ?。?)能力目標: a、讓學生感知數學知識與實際生活得密切聯系,培養(yǎng)學生解決實際的能力; b、學會借助實例分析,探究數學問題,發(fā)展學生的觀察歸納能力。 (3)情感目標: a、通過聯系生活,提高學生學習數學的積極性,形成積極的學習態(tài)度; b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹。 3、重點和難點 重點:集合的概念,元素與集合的關系。 難點:準確理解集合的概念。 二、學情分析(說學情) 對于中職生來說,學生的數學基礎相對薄弱,他們還沒具備一定的觀察、分析理解、解決實際問題的能力,在運算能力、思維能力等方面參差不齊,學生學好數學的自信心不強,學習積極性不高,有厭學情緒。 三、說教法 針對學生的實際情況,采用探究式教學法進行教學。首先從學生較熟悉的實例出發(fā),提高學生的注意力和激發(fā)學生的學習興趣。在創(chuàng)設情境認知策略上給予適當的點撥和引導,引導學生主動思、交流、討論,提出問題。在此基礎上教師層層深入,啟發(fā)學生積極思維,逐步提升學生的數學學習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學生的理解和掌握。 四、學習指導(說學法) 教學的矛盾主要方面是學生的學,學是中心,會學是目的,因此在教學中要不斷指導學生學會學習。根據數學的特點這節(jié)課主要是教學生動腦思考、多訓練、勤鉆研的研討,這樣做增加了學生主動參與的機會,增強了參與的意識,教學生獲取知識的途徑,思考問題的方法,使學生成為教學的主體,進而才能達到預期的教學目的和效果。 五、教學過程 1、引入新課: a、創(chuàng)設情境,揭示本課主題,同時對集合的整體性有個初步的感性認識。 b、介紹集合論的創(chuàng)始者康托爾 2、究竟什么是集合?(實例探究)切合學生現有的認知水平, 以學生熟悉的事物(物體),以實際生活為背景進行探究, 為本課教學創(chuàng)造出一種自然和諧的氛圍,充分調動學生的學習熱情接待探究過程學生積極思考、交流、作答,教師針對學生的回答啟發(fā),引導學生尋找實例中的共同特征,培養(yǎng)學生觀察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。 3、集合的概念,本課的重點。結合探究中的實例,讓學生說出集合和元素各是什么?知識的呈現由抽象到具體進一步熟悉元素與集合的概念,讓學生分清實際問題中的集合和元素為后面學習兩者間的關系做好鋪墊。 教師在這一環(huán)節(jié)做好學習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。 4、 熟悉鞏固集合的概念通過例題,練習、幫助學生進一步熟悉和理解集合的概念。 5、集合的符號記法,為本節(jié)重點做好鋪墊。 6、從實例入行手,探索元素和集合的關系,學生能用文字語言描述,如何用數學語言描述,給出元素與集合關系符號表示,在這個環(huán)節(jié)教師適當引導學生積極主動參與到知識逐步形成過程,便于學生理解和掌握,落實本課的重點,學習指導:⑴集合元素的確定。⑵理解兩符號的含義。 7、 思考交流本課的重要環(huán)節(jié)在課堂上給學生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學生的分析能力表達自己見解的能力。 8、 從所舉的例子中抽象出數集的概念,并給出常見數集的記法。 9、 學生練習:通過練習,識記常見數集的記法,同時進一步鞏固元素與集合間的關系。 10、知識的實際應用: 問題不難,落實課本能力目標,培養(yǎng)學生運用數學的意識和能力初步培養(yǎng)學生應用集合的眼光觀看世界。 11、課堂小節(jié) 以學生小節(jié)為主教師幫助為輔,鞏固所學知識,幫助學生認識到要學會梳理所學內容,要學會總結反思,使學生的認識進一步升華,培養(yǎng)學生的鬼納總結能力。 六、評價 教學評價的及時能有效調動課堂氣氛,感染學生的情緒,對課堂教學發(fā)揮著積極作用,教學過程遵重學生之間的差異培養(yǎng)學生應用集合的眼光看研究對象,注重過程評價與多元評價將教學評價貫穿于本堂課的每個教學環(huán)節(jié)。 七、教學反思 1、 通過現實生活中的實例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學生理解接受。 2、 啟發(fā)探究教學,營造學生的學習氛圍,培養(yǎng)學生自主學習,合作交流的能力。 一、教材分析 1、教材中的地位與作用:“2.1直線與方程”是蘇教版數學必修2的第二章的內容,是解析幾何的開篇之作。而“2.1.1直線的斜率”這一節(jié)是這一章的第一節(jié),是用斜率與傾斜角來刻畫直線方向的,它學習的內容是基礎的,學習方法是重要的。是為今后用代數的方法研究解析幾何問題的的學習奠定基礎,起到了啟下的作用。 2、教學的重點與難點:根據課程標準的要求,本節(jié)教學的重點為:直線斜率的本質認識與直線斜率的坐標公式。因為過定點的直線的傾斜程度就是用直線的斜率來刻畫的,斜率的是通過直線上兩點的縱坐標的差與橫坐標的差的比來計算的,反映了用代數的方法來研究幾何問題的核心思想。教學的難點為:直線斜率、傾斜角的定義和本質的理解、斜率與傾斜角之間的關系。因為傾斜角實際上是直線相對x軸的傾斜程度來反映直線的傾斜程度的,它與斜率一樣,都是刻畫直線的傾斜程度,但兩者的角度不同,所以存在一定的聯系,這一聯系正是教學的難點所在。 二、教學目標的確定 由于“2.1.1直線的斜率”是“直線與方程”的第一課時,又是解析幾何的開始部分。從學生原有的認知上分析,確定教學的目標為: 1、知識目標: ?。?)理解直線的斜率,掌握過兩點的直線的斜率公式 ?。?)理解直線的傾斜角的定義,知道直線的傾斜角的范圍 ?。?)掌握直線的斜率與傾斜角之間的關系 ?。?)使學生初步感受直線的方向與直線的斜率之間的對應關系,從而體會到要研究直線的方向的變化規(guī)律,只要研究直線的斜率的變化的規(guī)律 2、能力目標:培養(yǎng)學生的主動探究知識、合作交流的意識,觀測、探究、分析問題、解決問題的能力 3、情感目標:通過課堂教學培養(yǎng)學生的數行結合的美感與嚴謹治學的生活態(tài)度 三、教學與學法 1、學法指導:學生原有對直線知識的掌握情況為:在坐標系中能畫出直線的圖形,而高中則要求學生能用幾何量:斜率與傾斜角來刻畫直線的傾斜程度,能用代數的方法研究斜率的問題,所以在學法上要指導學生:觀測生活中的樓梯的坡度;探究坡度的大小與數學中的斜率有關系;領悟斜率的計算公式;理解斜率與傾斜角的關系。 2、教法指導:引導學生學會觀測目標,點撥生活中的量與量關系的數學本質,合理、嚴格的'定義直線的傾斜角。正確推倒斜率與傾斜角的關系式。 四、教學過程設計 1、問題情境,提出課題:從生活實例上樓梯出發(fā):有的樓梯陡一些,有的樓梯平一些。 問題1:這種“陡”與“平”可以用坡度來刻畫,即“高度”與“寬度”的比值大小來刻畫,那么直線的傾斜程度又如何來刻畫呢?是從學生的生活發(fā)展區(qū)出發(fā),調動學生的積極性。類比發(fā)現在直角坐標系中直線的傾斜程度可以用縱坐標的增量與橫坐標的增量的比來刻畫。從而引出將要學習的課題――直線的斜率。這樣引入課題顯得比較自然,也符合學生的思維認知規(guī)律。 2、自主探究,形成概念: 問題2:刻畫直線的傾斜程度—斜率,那么用什么量來表示這種“坡度”呢? 在直線上任取兩點,,如果,那么直線PQ的斜率為(),同時提醒學生要注意: ?。?)斜率公式與兩點的順序無關,與所選擇的直線上兩點的位置無關; ?。?)它是一個比值,是一個定值; ?。?)前提是,當時,即與軸垂直的直線,它的斜率是不存在。 3、解決問題,理解概念 通過對例1的分析與講解目的是幫助學生理解經過兩點的直線的斜率公式,使學生掌握直線斜率的符號與直線的方向之間的對應關系。還可以進一步提出思考:(1)給出斜率,畫出符合條件的直線;(2)給出直線讓學生分析直線斜率的特征。對題目作進一步的探討。這樣有利于培養(yǎng)學生的發(fā)散思維,促使良好思維習慣的形成 例2是畫圖問題,使學生進一步理解斜率的幾何意義,在例2的畫圖過程中讓學生感受直線相對x軸的傾斜程度,應該還與一個角有關系。從而引出直線傾斜角的概念 問3:如何定義直線的傾斜角呢?傾斜角概念得出后,教師總結:(1)直線的傾斜角與斜率一樣,也是刻畫直線的傾斜程度的量,但直線的傾斜角側重與直觀形象,直線的斜率則側重與數量關系;(2)任何直線都有傾斜角,但不是任何直線都有斜率。 五、鞏固練習,及時反饋 課本練習1、2、3、4。通過練習一方面可以加深學生對定義、公式的理解;另一方面也旨在了解學生對概念的掌握情況,以便調節(jié)后面的教學節(jié)奏。 六、回顧反思,形成系統(tǒng) 我是引導學生從知識內容和思想方法兩個方面進行小結的。通過小結使學生對本節(jié)課的知識結構有一個清晰的認識。在小結時不僅概括所學知識,而且還對所用到的數學方法和涉及的數學思想也進行歸納,這樣既可以使學生完成知識建構,又可以培養(yǎng)其能力。 七、作業(yè)布置 所布置的作業(yè)都是緊緊圍繞著“直線的斜率”的概念及運用。通過作業(yè)來反饋知識掌握效果,鞏固所學知識,強化基本技能的訓練,培養(yǎng)學生良好的學習習慣和品質。 八、關于評價 在授課過程中,我根據學生對課堂提問及例習題的解答情況,及時調節(jié)課堂節(jié)奏,“易”則可加快,“難”則應放慢速度,并借用富有啟發(fā)性的、階梯性的提問對學生進行思維引導。 課后,我將通過批改作業(yè)以及與學生談話等方式,來了解學生對“直線的斜率”概念的掌握情況,檢查教學目的的實現程度。同時,對下一步教學工作作出必要的調整和改進。另外,通過對作業(yè)的評判和統(tǒng)計課堂練習完成情況,有助于學生認識自我,讓他們獲得成就感,從而增強其自信心,培養(yǎng)學生積極進取的學習態(tài)度。 我說課的題目是《集合》。 《集合》是人教版必修1,第一章第一節(jié)的內容。 一.教材分析(首先我們一起來探討一下教材的地位和內容) 集合與函數的內容歷來是高中數學課程的傳統(tǒng)內容,也是后繼學習的基礎。作為現代數學基礎的集合論,它是一個具有獨特地位的數學分支。高中數學課程是將集合作為一種語言來學習,它是刻畫函數概念的基礎知識和必備工具。 二、教學目標(接下來我們分析一下本節(jié)的教學目標,新《課程標準》制定的學習目標是) ?。?)、學習目標 了解集合的含義與表示,理解集合間的關系和運算,感受集合語言的意義和作用。 ?。?)過程與方法 啟發(fā)學生發(fā)現問題,提出問題,通過學生的合作學習,探索出結論,并能有 條理的闡述自己的觀點; ?。?)、情感態(tài)度與價值觀 通過概念的引入,讓學生感受從特殊到一般的認知規(guī)律; 激發(fā)學生學習數學的興趣和積極性,陶冶學生的情操,培養(yǎng)學生堅忍不拔的意志; 三.教學重點與難點(接下來我們來看一下本節(jié)的重點和難點是什么) 重點 :(本節(jié)的重點應該是)使學生了解集合的含義與表示,理解集合間的關系和運算,會用集合語言表達數學對象或數學內容) 難點 :(在本節(jié)的學習過程中,學生們可能遇到的難點是) (1)(要)區(qū)別較多的新概念及相應的新符號; ?。?)(如何)選擇恰當的方法來準確表示具體的集合; 四.教法分析 1、以學生為中心,重點采用了問題探究和啟發(fā)式相結合的教學方法. 2、從實例、到類比、到推廣的問題探究,激發(fā)學生學習興趣,培養(yǎng)學 習能力啟發(fā),引導學生得出概念,深化概念. 3、利用多媒體輔助教學,節(jié)省時間,增大信息量,增強直觀形象性. 五.說教學過程(下面我以集合的含義與表示為例談一談我的教學設計) (那么整個教學流程分這么幾塊) “集合的含義與表示”的教學流程: 1問題引入 上體育課時,體育老師喊:高一**班同學集合!聽到口令,咱班全體同學便會從四面八方聚集到體育老師身邊,而那些不是咱班的學生便會自動走開。這樣一來,體育來說的一聲“集合”就把“某些特指的對象集在一起”了。 數學中的“集合”和體育老師的“集合”是一個概念嗎? 2構建新知(那么構建新知的時候,主要圍繞著以下幾點展開) ?。?) 集合的含義 數學中的“集合”和體育老師的集合并不是同一概念。體育老師所說的“集合”是動詞,而數學中的集合是名詞。同學們在體育老師的集合號令下形成的整體就是數學中集合的`涵義。 師:一般的,某些特定的對象集在一起就成為集合,也簡稱集,例如”我?;@球隊的隊員“圖書館里所有的書”。同學們能不能再接著舉出些集合的例子呢? (自由發(fā)言,教師復述其中正確的舉例并板書出來) ?。?)我們班所有女生 ?。?)所有偶數 (3)四大洋 ······ ?。?) 集合與元素的關系 師:元素與集合的關系有“屬于∈”及“不屬于? 如A={2,4,8,16},則4∈A,8∈A,32( )A.(請學生填充)。 注:1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q?? 元素通常用小寫的拉丁字母表示,如a、b、c、p、q?? 2、“∈”的開口方向,不能把a∈A顛倒過來寫。 ?。?) 集合的表示法 常用的有列舉法和描述法。 列舉法是把集合中的元素一一列舉出來的方法。 描述法是用確定的條件表示某些對象是否屬于這個集合的方法。 常見數集的專用符號 N:非負整數集(自然數集). Q:有理數集 R:全體實數的集合 `````` 3典例精析 例1, 判斷下列對象是否能組成一個集合,并說明理由 1身材高大的人 2所有的一元二次方程 3所有的數學難題 4滿足的實數所組成的集合 (在這里我要重點講的是第四個問題,有的同學會認為x^2<0的實數解不存在,所以這樣的集合沒有。事實上這樣的回答是錯誤的,因為不存在元素的集合應該叫做空集。 例2(對于例題2也同學們容易錯的題,這里主要是圍繞集合中的元素應該具有互異性展開,因為它具有互譯性,所以這個三角形一定不是等腰三角形) 已知集合{a,b,c}中的三個元素可構成某一三角形的三邊長,那么此三角形一定不是() A直角三角形B 銳角三角形C鈍角三角形D等腰三角形 例3 課本P3例1 例4 課本P4例2 例2, 例4主要是圍繞著集合的描述方法展開。對于這四道題的設計,我們主要 是圍繞著本節(jié)課的重點知識展開。通過對于例題的解析,加深對各個知識點的理解。 4歸納小結,布置作業(yè) 歸納小結: 1、集合的概念 2“集合中的元素必須是互異的”應理解為:對于給定的集合,它的任何兩個元素都是不同的. 3、常見數集的專用符號. 設計意圖:讓學生養(yǎng)成在學習之后,能養(yǎng)成做總結的習慣,有利于新知識的構建。 布置作業(yè): 一、課本P7,習題1.1 1 二、1、預習內容,課本P5—P6 授課時間: 08 年 9 月 12 日 授課年級、科目、課題: 高一數學 集合的概念 使用教材: 必修1(人教版) 說課教師: 劉華 各位老師同學們,大家好!今天我說課的課題是“集合的概念”,本節(jié)內容選自高中數學必修1(人教版),下面我將主要從六個方面介紹我的教學方案。 一、教材分析: 教材的地位和作用: 集合是學習高中數學的重要工具之一,起著承前啟后的作用。本小節(jié)首先從初中代數與幾何涉及的集合實例人手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明.然后,介紹了集合的常用表示方法,包括列舉法、描述法等,還給出了畫圖表示集合的例子.從教材我歸納出本節(jié)內容的教學重點和難點。 ?。ㄒ唬┙虒W重點:集合的基本概念和表示方法,集合元素的特征 ?。ǘ┙虒W難點:運用集合的三種常用表示方法、列舉法與描述法,正確表示一些簡單的集合 二、教學目標: ?。ㄒ唬┲R目標: ?。?)使學生初步理解集合的概念,知道常用數集的概念及其記法; ?。?)使學生初步了解“屬于”關系的.意義; ?。?)使學生初步了解有限集、無限集、空集的意義 ?。ǘ┠芰δ繕耍?/p> ?。?)重視基礎知識的教學、基本技能的訓練和能力的培養(yǎng); ?。?)啟發(fā)學生能夠發(fā)現問題和提出問題,善于獨立思考,學會分析問題和創(chuàng)造地解決問題; ?。?)通過教師指導,發(fā)現知識結論,培養(yǎng)學生抽象概括能力和邏輯思維能力; ?。ㄈ┑掠繕耍杭ぐl(fā)學生學習數學的興趣和積極性,陶冶學生的情 操,培養(yǎng)學生堅忍不拔的意志,實事求是的科學學習態(tài)度和勇于創(chuàng)新的精神。 三、學情分析: 針對現在的學生知識遷移能力差、計算能力差的特點,第一節(jié)課的內容不要求學生太多的計算,通過大量的舉例讓學生充分掌握集合的基礎知識。 四、教法分析: 為了突出重點、突破難點,本節(jié)課主要采用觀察、分析、類比、歸納的方法讓學生參與學習,將學生置于主體位置,發(fā)揮學生的主觀能動性,將知識的形成過程轉化為學生親自探索類比的過程,使學生獲得發(fā)現的成就感。在這個過程中力求把握好以下幾點: ?。?)通過實例,讓學生去發(fā)現規(guī)律。讓學生在問題情景中,經歷知識的形成和發(fā)展,力求使學生學會用類比的思想去看待問題。 ?。?)營造民主的教學氛圍,使學生參與教學全過程。 ?。?)力求反饋的全面性、及時性,通過精心設計的提問,讓學生的思維動起來,針對學生回答的問題,老師進行適當的點評。 ?。?)給學生思考的時間和空間,不急于把結果拋給學生,讓學生自己去觀察,分析,類比得出結果,提高學生的推理能力。 五、教學過程 ?。ㄒ唬土晫?/p> ?。?)簡介數集的發(fā)展,復習最大公約數和最小公倍數,質數與和數; ?。?)教材中的章頭引言; ?。?)教材中例子(P4)。 ?。ǘ┲v解新課 ?。?)集合的有關概念 ?。?) 常用集合及表示方法 ?。?)元素對于集合的隸屬關系 ?。?)集合中元素的特性 ?。ㄈ┱n堂練習 1下列各組對象能確定一個集合嗎? ?。?)所有很大的實數的集合 (不確定) ?。?)好心的人的集合 (不確定) ?。?){1,2,2,3,4,5} (有重復) ?。?)所有直角三角形的集合 (是 的) ?。?)高一(12)班全體同學的集合(是 的) ?。?)參加2008年奧運會的中國代表團成員的集合(是 的) 2、教材P5練習1、2 六:總結 1.本節(jié)主要學習了集合的基本概念、表示符號;一些常用數集及其記法;集合的元素與集合之間的關系;以及集合元素具有的特征. 2.我們在進一步復習鞏固集合有關概念的基礎上,又學習了集合的表示方法和有限集、無限集、空集的概念,同學們要熟練掌握. 各位領導 教師同仁: 我說課的內容是正切函數的性質和圖像。 教材理解分析 《1,4.3 正切函數的性質與圖像》是人教社A版必修4第一章第4節(jié)的第3小節(jié)的內容。是前面系統(tǒng)的'學習了正弦與余弦函數的概念,圖像及其性質以后滴內容 學習目標 1、掌握正切函數的性質及其應用 2、理解并掌握作正切函數圖象的方法; 3、體會類比、換元、數形結合等思想方法。 學情分析 由于我們文科平行班基礎不太好加之學習函數的圖像及性質又是一個難點,自主學習必然會出現困難。加之教學時間緊,任務重,前面地學習也不是很好。 根據教材結構和學情我對具體地教學過程和設計作如下說明: 在學法上大膽采用高效課堂模式,讓學生探究,大膽去掉非主線知識內容,內容程序盡量簡潔明了,一課一得,便于學生掌握。教學過程共有這樣幾個方面 一、復習引入 (1)畫出下列各角的正切線 (2)復習相關誘導公式 二、探究新知 探究一 正切函數的性質 探究二 正切函數的圖像 三、新知運用 例1 求函數的定義域、周期和單調區(qū)間. 四、課堂練習 1、求函數y=tan3x的定義域,值域,單調增區(qū)間。 2、 觀察正切曲線,寫出滿足下列條件x的范圍: (1) ; (2) ; (3) 五.小結與課后作業(yè) 高一數學說課稿12篇 高一數學說課課件相關文章: ★ 《倍數和因數》數學說課稿一等獎12篇(小學數學倍數與因數說課稿) ★ 一年級人教版數學說課稿12篇(人教版小學數學一年級說課稿) ★ 小學科學教學說課稿 小學科學說課稿范文3篇(教科版小學科學說課)高一數學說課稿5
高一數學說課稿6
高一數學說課稿7
高一數學說課稿8
高一數學說課稿9
高一數學說課稿10
高一數學說課稿11
高一數學說課稿12