下面是范文網(wǎng)小編整理的《圓柱的體積》教學設計12篇 圓柱的體積教學設計一等獎,供大家賞析。

《圓柱的體積》教學設計1
【教材簡析】:
本節(jié)內(nèi)容包括圓柱的體積計算公式的推導,利用公式直接計算圓柱的體積,利用公式求:圓柱形物體的容積。教材充分利用學生學過的知識作鋪墊,采用遷移法,引導學生將圓柱體化成已學過的立體圖形,再通過觀察、比較找兩個圖形之間的關系,可推導出圓柱的體積計算公式。
【教學內(nèi)容】:
p19-20頁的內(nèi)容和例題,完成“做一做”及練習三第1~4題。
【教學目標】:
1、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公 式,能夠運用公式正確地計算圓柱的體積和容積。
2、初步學會用轉(zhuǎn)化的數(shù)學思想和方法,解決實際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學生的自主探索意識。
【教學重點】:掌握圓柱體積的計算公式。
【教學難點】:圓柱體積的計算公式的推導。
【教學過程】:
第一課時本冊總課時:12 課時
一、復習
1、長方體的體積公式是什么?(長方體的體積=長×寬×高,長方體和正方體體積的統(tǒng)一公式“底面積×高”,即長方體的體積=底面積×高)
2、什么叫做物體的體積?你會計算下面那些圖形的體積?
3、拿出一個圓柱形物體,指名學生指出圓柱的底面、高、側(cè)面、表面各是什么,怎么求。
4、復習圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關系,再利用求長方形面積的計算公式導出求圓面積的計算公式。
二、新課
1、圓柱體積計算公式的'推導。
?。?)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的12塊,把它們拼成一個近似長方體的立體圖形——課件演示)
(2)由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。(課件演示將圓柱細分,拼成一個長方體)
(1)拼成近似長方體的體積與原來的圓柱體積有什么關系?(相等)
(2)拼成的近似長方體的底面積與原來圓柱的底面積有什么關系?(相等)
(3)拼成的近似長方體的高與原來的圓柱的高有什么關系?(相等)
?。?)通過觀察,使學生明確:
長方體的底面積等于圓柱的底面積,
長方體的高就是圓柱的高。
長方體的體積=底面積×高,
所以圓柱的體積=底面積×高,
v = s h
圓柱的體積計算公式是:
v=s h
2、課堂練習:
?。?)出示做一做:一根圓柱形鋼材,底面積是75平方厘米,長90厘米。它的體積是多少?
?。?)指名學生分別回答下面的問題:
?、?這道題已知什么?求什么?
?、?能不能根據(jù)公式直接計算?
?、?計算之前要注意什么?(計算時既要分析已知條件和問題,還要注意要先統(tǒng)一計量單位)
?。?)讓學生解答和板算,最后師生共同完成.
解:v=sh
=75×90
?。?75(立方厘米)
答:它的體積是675立方厘米。
3、引導思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的(v=π rh)
4.作業(yè):
《圓柱的體積》教學設計2
【教學過程】
一、揭示課題,確定目標
談話:前面我們認識了圓柱,學習了圓柱的底面積、側(cè)面積和表面積,今天學習“圓柱的體積”。(教師板書,學生齊讀)
啟發(fā):看到這個課題,你們會想到什么?這堂課要解決什么問題呀?(可能學生會提出以下幾個問題)
引導:
?。?)什么是圓柱的體積?
?。?)圓柱的體積和什么有關?
?。?)圓柱的體積公式是怎樣推導出來的?
?。?)圓柱的體積是怎樣求出來的?
?。?)學習圓柱的體積公式有什么用?
談話:對!剛才這幾位同學跟老師想的一樣。
啟發(fā):圓柱的體積就是圓柱所占空間的大小
談話:這堂課我們主要解決三個問題:(出示探究問題)
1、圓柱的體積和什么有關?
2、這個公式是怎樣推導出來的?
3、學習了圓柱的體積能解決什么實際問題?
【設計意圖】直接揭示課題,啟發(fā)學生自己提出教學的要求,這樣既創(chuàng)設了問題情境,激發(fā)學生學習的興趣,又使學生明確這堂課的教學目標。
二、溫故知新,自學課本
1、提出問題
談話:現(xiàn)在請大家回憶一下,我們以前學過哪些立體圖形的體積計算。是怎樣計 算的?
引導:我們已經(jīng)學過長方體、正方體的體積計算。(教師隨著學生的回答,逐一出示出上述圖形)。
談話:長方體的體積=長×寬×高
正方體的體積=棱長×棱長×棱長
統(tǒng)一為:長方體或正方體的體積=底面積×高
談話:長方體和正方體和今天學習的圓柱有什么顯著的區(qū)別?
引導:長方體的面都是平面圖形,圓柱的側(cè)面是一個曲面。
談話:因為圓柱的側(cè)面是一個曲面,計算圓柱的體積就比較困難了。能不能直接 用體積單位去量呢?
引導:它的側(cè)面是一個曲面,用體積單位直接量是有困難的。
2、引發(fā)猜想
談話:圓柱的體積和什么有關系呢?(準備三組比較圓柱體杯里飲料的多少:一組是底面積一樣,高不同;另一組高一樣,底面積不同;最后一組底面積、高都不同)
引導:圓柱體的體積既和底面積有關,又和高有關。
3、自學課本
談話:圓柱體的體積和底面積、高到底有什么關系呢?如何求圓柱體的體積?
啟發(fā):請大家閱讀課本,在課本中尋找答案。(教師要求學生利用預先準備好的平均分成16份圓柱學具拼一拼,學生一邊看書,一邊操作。學生閱讀課本后,全班交流。)
引導:我們用圖形轉(zhuǎn)化的方法,求圓柱的`體積。
談話:這個辦法很好。那么把圓柱轉(zhuǎn)化成什么圖形呢?
引導:長方體。
談話:以前我們學習圓的面積時也是運用轉(zhuǎn)化的策略,把圓轉(zhuǎn)化成近似的長方形,“化曲為直”、“化圓為方”推導出圓的面積計算公式。
?。ㄓ枚嗝襟w演示圓形的轉(zhuǎn)化過程,邊出示、邊交流)
【設計意圖】在不能用體積單位直接量的情況下,啟發(fā)學生運用轉(zhuǎn)化的數(shù)學思想解決問題。通過復習了舊知識,又為學習新知識作好鋪墊,能夠促進學生充分運用遷移規(guī)律把新舊知識聯(lián)系起來組成一個新的知識結構。
三、合作交流 發(fā)展能力
談話:同學們觀察一下,拼成的是什么圖形?
引導:近似的長方體。
啟發(fā):說得很好,為什么說是近似的長方體,哪里不太像?
引導:長都是許多弧線組成,不是直的。
談話:這里我們把圓柱分成16等分,還能分嗎?
談話:究竟能分多少份呢?
引導:無數(shù)份,可以永遠分下去。
談話:對。這就是說,分的份數(shù)是無限的。你們可以閉上眼睛想一想,如果分的份數(shù)越多,長就越接近于直線段,這個圖形就越接近于長方體。
四、師生合作 歸納結論
談話:從分割、拼接的操作過程中,比較拼成的近似長方體與原來的圓柱,你發(fā)現(xiàn)了什么?
匯報:把圓柱體轉(zhuǎn)化為近似的長方體,形狀變了,體積沒有變。
談話:要求圓柱的體積,我們只要求轉(zhuǎn)化后的長方體的體積就可以了。
匯報:
(1)轉(zhuǎn)化后的近似長方體的底面積與原來的圓柱體的底面積相等。
?。?)轉(zhuǎn)化后的近似長方體的高與原來的圓柱體的高相等。
因為:長方體的體積=底面積×高
所以:圓柱的體積 =底面積×高
?。ń處熞髮W生觀察自己在課堂上拼出的圖形,一邊討論,一邊逐步寫出推導的過程。)
長方體的體積=底面積×高
圓柱的體積 =底面積×高
交流:我們也可以用字母表示圓柱的體積計算公式:v = s h (板書)
引導:剛才我們的猜想是正確的,圓柱的體積既和底面積有關,又和高有關。
現(xiàn)在請同學們把圓柱體積公式的推導過程再完整地說一遍。
談話:通過猜一猜我們知道了圓柱體積的大小與圓柱的底面積和高有關。
通過分一分、拼一拼我們把圓柱轉(zhuǎn)化成了近似的長方體。
通過比一比、算一算成功地推導出圓柱的體積計算公式,解決了我們前兩個要探究的問題。
【設計意圖】要求每個學生動手操作,打破了過去教師演示教具學生看的框框,并滲透轉(zhuǎn)化、無限等數(shù)學思想,讓學生自己從嘗試中推導圓柱體積的公式。
《圓柱的體積》教學設計3
教學內(nèi)容:
課本第7頁圓柱體積
教學目標:
理解圓柱體積公式的推導過程,掌握圓柱體積計算公式,并能正確地計算圓柱的體積,提高知識的遷移和轉(zhuǎn)化的能力。
教學重點:
圓柱體積計算
教學難點:
圓柱體積的公式推導
教學關鍵:
實物演示幫助
教具準備:
圓柱體積演示模型
教學過程:
一、復習鋪墊。
1、圓柱的側(cè)面積怎么求?(圓柱的側(cè)面積=底面周長×高。)
2、長方體的體積怎樣計算?
學生可能會答出“長方體的體積=長×寬×高”,教師繼續(xù)引導學生想到長方體和正方體體積的統(tǒng)一公式“底面積×高”。
板書:長方體的體積=底面積×高
3、拿出一個圓柱形物體,指名學生指出圓拄的底面、高、側(cè)面、表面各是什么?圓柱有幾個底面?有多少條高?
請大家想一想,在學習圓的面積時,我們是怎樣把因變成已學過的圖形再計算面積的?
怎樣計算圓柱的體積呢?大家仔細想想看,能不能把圓柱轉(zhuǎn)化成我們已經(jīng)學過的圖形來求出它的體積?
二、學習探索。
這節(jié)課我們就來研究如何將圓柱轉(zhuǎn)化成我們已經(jīng)學過的圖形來求出它的體積。
板書課題:圓柱的體積
出示目標:1、推導2、計算
1、圓柱體積計算公式的推導。
教師出示一個圓柱,提問:這是不是一個圓柱?用手捂住圓柱的側(cè)面,只把其中的一個底面出示給學生看提問:“大家看,這是不是一圓?”“這是一個圓,那么要求這個圓的面積,剛才我們已經(jīng)復習了,可以用什么方法求出它的面積?”
學生很容易想到可以將圓轉(zhuǎn)化成長方形來求出圓的'面積,于是教師可以先把底面分成若干份相等的扇形(如分成16等份)。
然后引導學生觀察:沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊。教師將這分成16塊的底面出示給學生看,問:現(xiàn)在把底面切成了16份,應該怎樣把它拼成一個長方形?
大家再看看整個圓柱,它又被拼成了什么形狀?(有點接近長方體:)
指出:由于我們分得不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了。
把圓柱拼成近似的長方體后,體積發(fā)生變化沒有?圓柱的體積可以怎樣求?
小結:可以通過求切拼后的長方體的體積來求圓柱的體積。
板書:“長方體的體積=底面積×高”。
請大家觀察教具,拼成的近似長方體的底面積與原來圓柱的哪一部分有關系?近似長方體的高與原來圓柱的哪一部分有關系?
明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。
板書:圓柱的體積=底面積×高
如果用V表示圓柱的體積,S表示圓柱的底面積,h表示圓柱的高,可以得到圓柱的體積公式:V=Sh
2、自覺書本第7、8頁。
3、教學例3。
出示例3。
?。?)教師指名學生分別回答下面的問題:
①這道題已知什么?求什么?
?、谀懿荒芨鶕?jù)公式直接計算?
?、塾嬎阒耙⒁馐裁??
(2)用投影片或小黑板出示下面幾種解答方案,讓學生判斷哪個是正確的?
?、賄=sh=40×1.8=72
答:它的體積是72立方厘米。
②1.8米=180厘米
V=sh=40×1800=72000
答:它的體積是72000立方厘米。
?、?0平方厘米=0.4平方米
V=sh=0.4×1.8=0.72
答:它的體積是0.72立方米。
④40平方厘米=0.004平方米
V=sh=0.004×1.8=0.0072立方米
答:它的體積是0.0072立方米。
?。?)自覺書本第8頁例3。提出質(zhì)疑。
?。?)做第9頁“試一試”。
三、課堂小結。
通過這節(jié)課的學習,你有什么收獲?你是怎樣聯(lián)系學過的知識進行學習的。
四、鞏固練習。練一練1~4題。
五、《作業(yè)本》第4頁。
《圓柱的體積》教學設計4
教學目標
1.使學生初步理解和掌握圓柱的體積計算公式。會用公式計算圓柱的體積,并能應用分式解答一些實際問題。
2.在充分展示體積公式推導過程的基礎上,培養(yǎng)學生推理歸納能力和自學能力。
教學重點: 圓柱體積公式推導過程;正確理解圓柱體積公式推導過程。
教學難點:圓柱體積公式推導過程;正確理解圓柱體積公式推導過程。
教 法:啟發(fā)點撥,歸納總結,直觀演示
學 法:自學歸納法,小組交流法
課前準備:課件
教學過程:
一、定向?qū)W(5分)
(一)導學
1.什么叫體積?(指名回答)
生:物體所占空間的大小叫做體積。
師:你學過哪些體積的計算公式?(指名回答)
根據(jù)學生的回答,板書:
長方體體積=底面積×高
2.圓面積公式是怎樣推導出來的?
生:把一個圓,平均分成數(shù)個扇形,拼成一個近似長方形,長方形的長相當于圓周長的一半,寬相當于圓的半徑,(根據(jù)學生的敘述,邊用幻燈片演示。)得到圓面積公式s=2πr。
3.動腦筋想一想,圓柱的體積,能不能轉(zhuǎn)化成你學過的形體,推導出計算圓柱體積的公式?
4、導入
我們已經(jīng)認識了圓柱體,學會了圓柱體側(cè)面積和表面積的計算,今天研究圓柱的體積。(板書:圓柱的體積)
?。ǘ┒ㄏ?/p>
出示學習目標:
1、理解和掌握圓柱的體積計算公式。
2、會用公式計算圓柱的`體積,并能運用公式解答一些實際問題。
二、合作交流(15分)
1.閱讀書25頁。
2、看書回答:
(1)圓柱體是怎樣變成近似長方體的?
(2)切拼成的長方體的體積、底面積和高分別與圓柱體的體積、底面積、高有什么關系?
(3)怎樣計算切拼成的長方體體積?為什么 ?用字母怎樣表示?
3、小組展評交流結果。
(1)展評題(1)。圓柱體是怎樣變成長方體的?把圓柱體底面分成許多相等的扇形(例如分成16份),然后把圓柱切開,拼成一個近似長方體。(教師加以說明,底面扇形平均分的份數(shù)越多,拼成的立體圖形越接近長方體。)
(2)展評題2。
切拼成的長方體的體積相當于圓柱的體積,長方體的底面積相當于圓柱體的底面積,長方體的高相當于圓柱體的高。
?。?)展評題3
圓柱體積=底面積×高
v=sh
4、公式檢測
學生獨立完成書上做一做1、2題。
三、自主學習(5)
1、出示例6
下面這個杯子能不能裝下這袋奶
直徑8厘米 高10厘米 這袋奶498毫升
2、嘗試列式計算.
3、學生展示自學結果。
4、小結
小結:要求圓柱體積,必須知道圓柱的底面積(如果給半徑、直徑、底面周長,先求出底面積)和高。注意統(tǒng)一單位名稱。
四、質(zhì)疑探究(2)
已知圓柱的底面周長和高又怎樣求圓柱的體積?
五、
小結檢測
?。?/p>
13
分)
(一)小結
讓學生說出圓柱體積的推導過程,體積公式。
?。ǘz測
1、把圓柱切開,可拼成一個( ),圓柱的體積等于近似長方體的( ),圓柱的底面積等于( ),圓柱的高等于( ),所以圓柱的體積=( )。
2.圓柱體的底面積3.14平方分米,高40厘米。它的體積是多少?
3.一根圓柱形鐵棒,底面周長是12.56厘米,長是100厘米,它的體積是多少?
4 判斷正誤,對的畫“√”,錯誤的畫“×”。
?。?)圓柱體的底面積越大,它的體積越大。( )
?。?)圓柱體的高越長,它的體積越大。( )
?。?)圓柱體的體積與長方體的體積相等。( )
?。?)圓柱體的底面直徑和高可以相等。( )
5、 一張長方形的紙長6.28分米,寬4分米。用它分別圍成兩個圓柱體,它們的體積大小一樣嗎?請你計算一下。
板書設計:
圓柱的體積
圓柱體積=底面積×高
v=sh
75× 90=6750(立方厘米) 杯子的底面積:3.14×(8/2) ×(8/2) ×10=502.4(ml)
答:它的體積是6750立方米。答:這個杯子能裝下這袋奶。
《圓柱的體積》教學設計5
教學目標:
1、通過教學,使學生經(jīng)歷觀察、猜想、操作、驗證、交流和歸納等數(shù)學活動過程,探索并掌握圓柱的體積公式,初步學會應用公式計算圓柱的體積,并解決相關的簡單實際問題;
2、使學生在活動中進一步體會“轉(zhuǎn)化”方法的價值,培養(yǎng)應用已有知識解決新問題的能力。
3、培養(yǎng)學生初步的空間概念、動手能力、操作能力和邏輯思維推理能力。
教學重點:
掌握和運用圓柱體積計算公式進行正確計算。
教學難點:
理解圓柱體積計算公式的推導過程,體會“轉(zhuǎn)化”方法的價值。
教學準備:
1、用于演示把圓柱體積轉(zhuǎn)化成長方體體積的教具。
2、多媒體課件。
教學過程:
一、復習導入、揭示課題
談話:前幾節(jié)課我們已經(jīng)認識了圓柱體,學會了計算圓柱的側(cè)面積、底面積和表面積,今天這節(jié)課我們繼續(xù)來研究圓柱的體積。同學們回憶一下,什么叫體積?(指名回答,生:物體所占空間的大小叫做體積。)我們學會計算哪些立體圖形的體積呢?(指名學生回答,教師演示課件。根據(jù)學生的回答,板書:長方體的體積=底面積×高)
1、呈現(xiàn)長方體、正方體和圓柱的直觀圖。
2、揭題:老師為大家準備了長方體、正方體、圓柱。其中我們學過了長方體和正方體的體積計算方法。大家想不想知道圓柱體的體積計算方法?今天我們一起來探索圓柱體積的計算方法。(板書課題:圓柱的體積)
3、教師:在研究這個問題之前,我們先來復習一下,圓的面積是怎樣計算的呢?圓的面積計算公式是怎樣推導出來的?(學生:把一個圓,平均分成若干個扇形,拼成一個近似長方形,長方形的長相當于圓周長的一半,寬相當于圓的半徑。)根據(jù)學生的敘述,教師課件演示。
二、自主探究,精講點撥
1、教師:那么今天我們要研究的圓柱的體積,能不能也像剛才圓的面積公式推導過程一樣,轉(zhuǎn)化成我們學過的立體圖形,推導出計算圓柱體積的公式呢?
2、學生小組討論、交流。
教師:同學們自己先在小組里討論一下
?。?)你準備把圓柱體轉(zhuǎn)化成什么立體圖形?
?。?)你是怎樣轉(zhuǎn)化成這個立體圖形的?
?。?)轉(zhuǎn)化以后的立體圖形和圓柱體之間有什么關系?
3、推導圓柱體積公式。
學生交流,教師動畫演示。
(1)把圓柱體轉(zhuǎn)化成長方體。
(2)怎樣轉(zhuǎn)化成長方體呢?(指名敘述:把圓柱體底面分成平均分成若干個扇形(例如分成16份),然后把圓柱切開,拼成一個近似長方體。)你會操作嗎?(學生演示教具)
?。?)教師說明:底面扇形平均分的份數(shù)越多,拼成的立體圖形就越接近長方體。
(4)教師:這個長方體與圓柱體比較一下,什么變了?什么沒變?(生:形狀變了,體積大小沒變。)
(5)推導圓柱體積公式。
討論:切拼成的長方體與圓柱體有什么關系?(學生回答:切拼成的長方體的.體積相當于圓柱的體積,長方體的底面積相當于圓柱體的底面積,長方體的高相當于圓柱體的高。教師根據(jù)學生回答演示課件。)
教師:圓柱的體積怎樣計算?用字母公式,怎樣表示?板書:
圓柱的體積 = 底面積×高
V = S h
三、運用公示,解決問題
教師:根據(jù)圓柱體積的計算公式,如果要求圓柱的體積,你必須知道哪些條件就可以求?
①知道圓柱的底面積和高,可以求圓柱的體積。
練習七的第1題:填表。
?、谥缊A柱的底面半徑和高,可以求圓柱的體積。
試一試。
③知道圓柱的底面積直徑和高,可以求圓柱的體積。
練一練的第1題:計算下面各圓柱的體積。
?、苤缊A柱的底面周長和高,可以求圓柱的體積。
一根圓柱形零件,底面周長是12.56厘米,長是10厘米,它的體積是多少?
四、遷移應用,質(zhì)疑反饋。
1、判斷正誤,對的畫“√”,錯誤的畫“×”。
2、計算下面各圓柱的體積。
3、智慧屋:已知一個圓柱的側(cè)面積為37.68平方厘米,底面半徑為3厘米,求這個圓柱的體積。
五、全課小結。
這節(jié)課我們一起學習了運用轉(zhuǎn)化的方法推導出圓柱體積的計算公式,并且能夠運用圓柱體積的計算公式解決一些實際問題。在今后的學習中,特別提醒大家一定正確計算出圓柱的體積,并且能靈活運用圓柱的體積計算公式。
六、作業(yè)布置:
完成作業(yè)紙上的習題
教學反思
本節(jié)可的教學內(nèi)容是九年義務教育蘇教版六年級下冊的《圓柱的體積》,以前教學此內(nèi)容時,直接告訴學生:圓柱的體積=底面積×高,用字母表示公式:V=Sh,讓學生套公式練習;我教此內(nèi)容時,不按傳統(tǒng)的教學方法,而是采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:
一、學生學到了有價值的知識。
學生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學生在自己艱苦的學習中發(fā)現(xiàn)并從學生的口里說出來的這樣的知識具有個人意義,理解更深刻。
二、培養(yǎng)了學生的科學精神和方法。
新課程改革明確提出要“強調(diào)讓學生通過實踐增強探究和創(chuàng)新意識,學習科學研究的方法,培養(yǎng)科學態(tài)度和科學精神”。學生動手實踐、觀察得出結論的過程,就是科學研究的過程。
三、促進了學生的思維發(fā)展。
傳統(tǒng)的教學只關注教給學生多少知識,把學生當成知識的“容器”。學生的學習只是被動地接受、記憶、模仿,往往學生只知其然而不知其所以然,其思維根本得不到發(fā)展。
而這里創(chuàng)設了豐富的教學情景,學生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學基本知識,從而促進了學生的思維發(fā)展。
不足之處是:
1、
2、 留給學生自由討論、實踐和思考的時間較少。 教學時教師語言過于平緩,沒有調(diào)動起學生的積極性。
《圓柱的體積》教學設計6
教學內(nèi)容:
蘇教版義務教育教科書《數(shù)學》六年級下冊第18-19頁練習三第10—16題,思考題以及動手做。
教學目標:
1.通過知識梳理、交流展示等,使學生進一步理解圓柱表面積和體積的區(qū)別,能選擇恰當?shù)姆椒ń鉀Q問題,在浸沒實驗中,能測算出不規(guī)則物體的體積,積累活動經(jīng)驗,提升實驗素養(yǎng)。
2.使學生經(jīng)歷觀察、操作、比較、分析、估計、類比、歸納等活動過程,培養(yǎng)學生初步的比較、分析、綜合、抽象、概括,以及簡單的判斷、推理能力,提高轉(zhuǎn)化的意識和能力,發(fā)展數(shù)學思考,增強空間觀念。
3.通過豐富的數(shù)學學習活動,使學生進一步體會數(shù)學與生活的聯(lián)系,感受立體圖形學習的價值,提高數(shù)學學習的興趣和學好數(shù)學的信心。
教材分析:
圓柱和圓錐這部分內(nèi)容是學生認識了圓,掌握了長方體和正方體的形狀特征以及表面積與體積計算方法的基礎上編排,是小學數(shù)學最后教學的形體知識。與長方體、正方體一樣,圓柱也是基本的幾何形體,在日常生活和生產(chǎn)勞動中經(jīng)常能夠看到。教學圓柱能夠擴大學生認識幾何形體的范圍,豐富對形體的認識,有利于解決更多的實際問題。教學圓柱,也能夠豐富學生認識幾何形體的活動經(jīng)驗,深入理解體積的意義,有利于完善認知結構,發(fā)展空間觀念,有利于轉(zhuǎn)化能力和推理能力的進一步提高。
學情分析:
學生在過去的學習中已經(jīng)積累了十分豐富的圖形與幾何的學習經(jīng)驗,特別是圓面積的計算方法,長方體、正方體、圓柱和圓錐的特征,長方體、正方體和圓柱的表面積和體積的計算方法等知識的探索過程,以及在這些過程中獲得的學習經(jīng)驗和方法,都為本課圓柱體積的綜合練習奠定了堅實的基礎。本節(jié)課,學生通過知識梳理、交流展示等活動,可以進一步理解圓柱表面積和體積的區(qū)別,并能選擇恰當?shù)姆椒ń鉀Q問題,發(fā)展數(shù)學思考,增強空間觀念,進一步體會數(shù)學與生活的`聯(lián)系,感受立體圖形學習的價值,提高數(shù)學學習的興趣和學好數(shù)學的信心。
設計理念:
從以教定學,到以學定教,再到由學轉(zhuǎn)教。學習金字塔理論告訴我們:最好的學習是講給別人聽,隨著教學改革的不斷推進,我們從“以教定學”走向了“以學定教”,以學定教,呼喚教育教學回到學生的真實學情、現(xiàn)實認知水平等方面上來,根據(jù)學生的“學”,設計教師的“教”,日益凸顯了教師是組織者、引導者、合作者的角色定位。葉圣陶先生說過,“教是為了不教”,賦予“以學定教”更多的生長意義,我們在不知不覺中,從“以學定教”轉(zhuǎn)向了“由學轉(zhuǎn)教”,即由學生的學轉(zhuǎn)為由學生來教的更高級的學習生態(tài)。教學方式的改變讓我們更加明確了學習的意義。
重點難點:
教學重點:用圓柱的表面積和體積公式解決實際問題。教學難點:合理分析問題并選擇恰當算法,增強空間觀念。
教學準備:
教師準備:反饋器一套;希沃白板、課件及5塊互動大屏;投影儀;兩份合作學習(實驗)單;板貼一套等。
學生準備:底面被平均分成16份的圓柱形學具16套;知識梳理圖50張;預學單50張;圓柱形容器及土豆或鐵塊若干等。
《圓柱的體積》教學設計7
【教學目標】
1、探索圓柱體積的計算方法,利用數(shù)學思想,體驗數(shù)學研究的方法。
2、讓學生掌握圓柱體積的計算方法,運用體積公式解決簡單的實際問題。
3、通過把圓柱體轉(zhuǎn)化成近似的長方體,提高學生解決問題的能力,感受獲得成功的喜悅。
【教學重點】掌握和運用圓柱體積的計算公式。
【教學難點】圓柱體積公式的推導過程。
【教學方法】直觀教學法,先用教具讓學生觀察比較,再讓學生動手操作。在實踐操作過程中理解掌握圓柱體積的計算方法。
【教學過程】
一、情景導入,復習舊知。
1、什么是圓柱的體積?
?、俪鍪厩榫硤D。修一面墻,用哪一種磚,所要的塊數(shù)較少?為什么?
?、谑裁唇凶鑫矬w的體積?
③長方體的正方體的體積計算公式是什么:從公式中可以看出,要計算長方體和正方體的體積必須得到哪些明確的數(shù)據(jù)?
?、芡茰y:圓柱的體積可能與它的什么有關?
2、導入新課。
這節(jié)課我們就一起來探索圓柱體積的計算方法。板書課題:“圓柱的體積”
二、探索新知
1、比較大小,探究圓柱的體積與哪些因素有關。(讓學生先試著說說)
?。?)圖1:比較等高不等底的三個圓柱的體積。(學生通過觀察發(fā)現(xiàn)等高時底面積越大圓柱的體積也就越大)
?。?)圖2:比較等底不等高的五個圓柱的體積。(學生通過觀察發(fā)現(xiàn)等底時高越大圓柱的體積也就越大。)
?。?)圓柱的體積計算公式可能是什么樣的?V=Sh 2、大膽猜想,求證體積公式。
?。?)引導學生回憶長方體、正方體的體積計算方法。
?。?)設疑:圓柱的體積又該怎么樣計算呢?根據(jù)以前學過的知識你可以做出怎樣的.假設?
?。?)學生小組討論交流。
(4)各小組參加全班交流匯報。(把圓柱底面分成許多相等的小扇形,把圓柱切開,就可以拼成一個近似的長方體,長方體的體積是底面積乘高,圓柱的體積也可能就是底面積乘高來計算的。)
3、演示轉(zhuǎn)化過程,推導公式。
?。?)老師操作轉(zhuǎn)化過程。先分一個四或八等分的再分手上的這個十六等分的。
?。?)學生帶問題操作轉(zhuǎn)化過程。
a:拼成的長方體的底面積等于圓柱的什么?
b:拼成的長方體的高又是圓柱的什么?(長方體的底面積等于圓柱體的底面積,高等于圓柱體的高。)
師生共同完成推導過程。
長方體的體積=底面積×高 圓柱的體積=底面積×高 v = s h 圓柱的體積計算公式就是:v=sh
(4)如果知道圓柱的底面半徑r和高h,圓柱的體積公式又可以怎樣來寫呢?v=πr2h
?。?)教材第25頁“做一做”第1、2題。(第2題先讓學生說說解題步驟,再齊練)
4、教學例6。
?。?)出示例6。讀題,說說從題中獲得的信息。
?。?)引導學生思考:解決這個問題就是要計算什么?
老師:求杯子的容積就是求這個杯子可容納物體的體積,計算方法跟圓柱體積的計算方法相同。
?。?)學生獨立解決問題。
?。?)組織交流反饋。
交流時,引導學生交流自己的解題步驟,著重說明杯子內(nèi)部的底面積沒有直接給出,因此先要求底面積,再求杯子的容積。
三、 鞏固應用
1、完成教材第26頁“做一做”第一題。
?。?)要判斷這杯水夠不夠喝,需要知道什么?你打算分哪幾步計算?嘗試完成。
?。?)要求這個問題,需要先求什么?再求什么?獨立完成。
2、完成教材第28頁練習五第2題。
?。?)嘗試完成。
?。?)說說解題思路。
3、完成教材第28頁練習五第3題。
?。?)嘗試完成。
?。?)說說解題思路。
四、課堂小節(jié)
今天這節(jié)課,我們一起探究了圓柱體積的計算方法。在探究的過程中,我們經(jīng)歷了猜測、實驗、證明的思維過程。圓柱體積的計算方法和長方體、正方體相同,都可以用“底面積×高”來求。
五、課堂作業(yè)
教材練習五第4、5題。
板書設計:
圓柱的體積 長方體的體積=底面積×高 圓柱的體積 =底面積×高 V= s h 圓柱的體積計算公式是v=sh=πr2h
《圓柱的體積》教學設計8
教學圓錐的體積是在掌握了圓錐的認識和圓柱的體積的基礎上教學的。教學時讓學生通過實驗來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關系,從而得出圓錐的體
積等于和它等底等高的圓柱體積的三分之一,并能運用這個關系計算圓錐的體積,讓學生從感性認識上升到理性認識。
我讓學生觀察,先猜測圓錐的體積和什么有關,學生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學生的學習興趣,使學生明白學習目標。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學生對形體的認識。然后讓學生動手實驗:有的`組用捏橡皮泥的方法,有的組用到沙子的方法;有的組用計算的方法。讓孩子親歷教學的驗證過程,從實驗中得出結論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。接著我趁熱打鐵,讓學生想一想等積等高的時候,圓柱和圓錐有什么樣的關系?等積等底的時候,圓柱和圓錐又會有什么樣的關系?這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應用公式解決實際的生活問題,起到鞏固深化知識點的作用。
圓錐的體積這節(jié)課的教學具有下面的特點,一是在教學新課時,沒有像傳統(tǒng)教學那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學生觀察倒沙實驗,而是通過師生交流、問答、猜想等形式,調(diào)動學生的積極性,激發(fā)學生強烈的探究欲望,學生迫切希望通過實驗來證實自己的猜想,所以做起實驗就興趣盎然;二是在實驗時,讓學生小組合作親自動手實驗,以實驗要求為主線,即動手操作,又動腦思考,努力探索圓錐體積的計算方法。這樣的學習,學生學的活,記得牢,即發(fā)揮教師的主導作用,又體現(xiàn)了學生的主體地位。學生在學習的過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學習體驗
在教學之后感覺到遺憾的是,由于教具有限,參與實驗的學生不多,如果每個小組準備一套學具,讓他們以小組合作學習的方式使每個學生都能真切的參與到探究中去,這樣每個學生都能懷著喜悅的心情進行學習,最大限度的發(fā)揮每個學生的自主學習的能力,這樣的學習不僅使學生學會了知識,更重要的是培養(yǎng)了學生的能力。
教材中圓錐體積的相對練習較少,但在考試里面實際解決問題中卻常常需要學生能夠靈活應用,所以特別增加了一課時練習。教學中的一組填空題,對于幫助學生深入理解等底等高圓柱與圓錐的聯(lián)系很有價值。通過練習,學生們明確了圓柱與等底等高的圓錐體積和為4個圓錐的體積(或三分之四個圓柱的體積),而它們的體積相差2個圓錐的體積(或三分之二個圓柱的體積)??。掌握這些知識對于解決實際問題很有幫助,如將圓柱削成最大的圓錐,求削去部分的體積是多少,就可直接用圓柱的體積乘三分之二從而使計算簡便。
教學的最后我與孩子們一起通過大量的練習,引導總結出了圓柱和圓錐體積和高(或者是底面積)相等,那么圓錐的底面積(或高)是圓柱的3倍,圓柱的底面積(或高)是圓錐的三分之一。
總而言之,圓柱圓錐的體積計算是教學的重點和難點,也是考試中學生容易丟分的危險高發(fā)內(nèi)容,我在后面的教學中需要精講和精煉,讓學生熟能生巧、巧能生精,內(nèi)化成自己的數(shù)學直覺方為最高層次!
《圓柱的體積》教學設計9
教材版本
《義務教育課程標準實驗教科書》 (人教版) 六年級數(shù)學下冊。
課程標準摘錄
1、結合具體情境,探索并掌握長方體、正方體、圓柱體的體積和表面積以及圓錐體體積的計算方法。
2、探索某些實物體積的測量方法。
學情與教材分析
“圓柱的體積” 是人教版六年級下冊“圓柱和圓錐”這一單元的第四節(jié)的內(nèi)容,在學習本節(jié)內(nèi)容之前,學生已經(jīng)認識了圓柱,學習了體積,經(jīng)歷了長、正方體的體積推導過程以及圓面積公式的推導過程。在推導圓柱的體積公式時,把圓柱體轉(zhuǎn)化成長方體,高并沒有變,只是把底面的圓形轉(zhuǎn)化成長方形,它的轉(zhuǎn)化過程實際上和圓轉(zhuǎn)化成長方形求面積的方法相同,學生已具備有學習本課的技能。教學中不僅要讓學生知道圓柱體積計算公式是什么,而且要讓學生主動探索、經(jīng)歷圓柱體體積計算公式的推導過程,從而體驗探索成功的快樂,激發(fā)學生的學習興趣。學會學習方法,獲得學習經(jīng)驗。
學習目標
1、經(jīng)歷探究和推導圓柱的體積計算公式的過程,理解并掌握圓柱體積計算方法,并能正確計算圓柱體積,達標率100%。
2、能運用圓柱的體積計算方法,解決有關的實際問題,發(fā)展學生的實踐能力,達標率95%。
3、能積極參與圓柱體積計算公式推導活動,能有條理地、清晰地闡述活動過程,發(fā)展學生的觀察能力和分析、綜合、歸納推理能力,達標率95%。
4、激發(fā)學生的學習興趣,讓學生體驗成功的快樂,達標率100%。
5、培養(yǎng)學生的轉(zhuǎn)化思想,滲透辯證法和極限的思想,達標率95%。
學習重點
圓柱的體積計算方法
學習難點
圓柱體積計算公式的推導。
教具、學具準備:
1、師:圓柱體積計算公式推導教具,課件。
2、生:削好的圓柱體蘿卜或土豆、或圓柱體橡皮泥,小刀。
教學設想
本節(jié)課第一個環(huán)節(jié)激活舊知、引出新知,采用復習長方體、正方體的體積公式,圓面積計算公式的推導過程,從轉(zhuǎn)化的思想、方法上為推導圓柱的體積公式做一些鋪墊。第二個環(huán)節(jié)自主合作、探索新知,采用了激趣設疑的方法層層深入,調(diào)動同學們學習的熱情,激發(fā)學生探究的欲望。學生積極合作交流,主動參與到圓柱體積計算公式的推導過程中,從而體驗探索成功的快樂,激發(fā)學生的學習興趣。學會學習方法,獲得學習經(jīng)驗。然后通過例題教學加深對圓柱的體積公式的理解,體會計算公式在實際生活中的應用,發(fā)展學生的實踐能力。第三個環(huán)節(jié)鞏固練習、拓展提高,采用了分層教學的方法,設計的練習題由易到難,這樣設計的目的,是考慮使差生吃得消,中等生吃得好,尖子生吃得飽。通過本節(jié)課的教學,學生在自主探索和合作交流過程中真正理解和掌握數(shù)學的知識與技能、特別是讓學生獲得數(shù)學的思想和方法,獲得數(shù)學活動的經(jīng)驗,同時陶冶了情操。
教法、學法
演示法、啟發(fā)引導;實驗、合作探究、嘗試練習。
評價方案
1、通過小組合作實驗完成活動檢測目標1、4、5的達成。
2、通過提問檢測目標3、4、5的達成。
3、通過評價樣題檢測目標1、2、4的達成。
評價樣題
1、
2、
教學過程
一、激活舊知,引出新知
1、計算下面物體的體積
?。?)長方體的長20厘米,寬10厘米,高8厘米。
(2)正方體棱6分米
2、回憶一下圓面積的計算公式是如何推導出來的?
[學情預設:學生可能說出通過分割、拼合的辦法變成長方形或者平行四邊形,或者三角形,或者梯形來推導出圓的面積。這時教師要及時總結不論是拼成哪種圖形都是把圓轉(zhuǎn)化成已學過面積計算的圖形,再根據(jù)轉(zhuǎn)化后的圖形與圓各部分之間的關系推導出它的面積。]
教師(結合課件演示)把一個圓平均分割,再拼合就變成了一個近似的平行四邊形,分的份數(shù)越多越接近一個長方形。長方形的長,相當于圓周長的一半,長方形的寬相當于圓的半徑。因為長方形的面積=長×寬,所以,用圓周長的一半×半徑就可以求出圓的面積,周長一半就等于πR,半徑是R,所以圓的面積是S=πR。
[設計意圖:從轉(zhuǎn)化的思想、方法上為推導圓柱的體積公式做一些鋪墊。]
3、什么叫體積?如何求長方體的體積?如何求正方體的體積?長方體和正方體的通用公式是什么?
?。墼O計意圖:為定義圓柱體的體積,為推導圓柱體的體積公式做知識上的鋪墊。]
板書:長方體的體積=底面積×高.
?。墼O計意圖:原有的基礎是后續(xù)學習的前提和起點,新知總是在舊知的基礎上生長發(fā)展的。這種承上啟下的關系決定了我們的教學必須從學生原有的認知結構出發(fā),找準新舊知識的連接點,為新課的學習做好思想方法與知識的鋪墊。]
圓柱體也有體積,說一說什么是圓柱的體積?學生交流后匯報。
板書:圓柱體所占空間的大小叫做圓柱的體積。
師:這節(jié)課,我們就來學習圓柱的體積.(板書課題:圓柱的體積)
二、自主合作,探索新知
1.求圓柱體容器中水的體積
出示長方體容器:問,這是什么?
?。蹖W情預設:學生可能說出長方體容器。]
問:怎么求長方體容器中水的體積呢?
[學情預設:學生可能說出量出它所容納水的長、寬、高,就可以求出水的體積。] 問:如果換成圓柱體容器又如何求其中水的體積呢?
?。蹖W情預設:學生可能說出,把圓柱體容器中的水倒入長方體容器,量出長方體容器所容納水的.長、寬、高,就可以求出圓柱體容器中水的體積。](演示:把圓柱體容器中的水倒入長方體容器)
2.橡皮泥圓柱體的體積
?。ǔ鍪鞠鹌つ嘧龀傻膱A柱體)
問:這是一個什么樣的立體圖形?
問:它是用橡皮泥做成的。你能想辦法求出它的體積嗎?
?。蹖W情預設:學生可能說出把這個圓柱體捏成一個長方體,從而量出長方體的長、寬、高,求出這個圓柱的體積。]
3.常用圓柱的體積.
課件出示圓柱體壓路機的滾筒的圖片。
問:壓路機的滾筒是一個很大的的圓柱體,你又如何求出它的體積呢?
?。墼O計意圖:用圓柱體容器所盛的沒有形狀的水到可以變形的圓柱形橡皮泥,這些都可以轉(zhuǎn)化的辦法轉(zhuǎn)化為長方體來求出體積,這一過程就是要逐步滲透把圓柱體轉(zhuǎn)化為長方體的方法和思想,這樣從思想上、方法上給學生一個思維的臺階。當出示圓柱體壓路機的滾筒圖片后,由于前面的物體是可以變形的,而壓路機的滾筒是不可以變形的,學生想不出解決的辦法,學生處于憤悱狀態(tài),對學生來說解決求壓路機的滾筒體積具有很強的挑戰(zhàn)性,調(diào)動了學生學習的積極性。這樣設計,為后面同學們操作、討論推導圓柱的體積從思想方法上作了進一步的鋪墊,并通過構造認知沖突,層層深入,調(diào)動同學們學習的熱情,激發(fā)學生探求的欲望。這樣,對學生思想方法的鋪墊也已水到渠成。]
小結:看來我們以上的方法求圓柱的體積有它的局限性,所以必須探究求圓柱體積的一般規(guī)律。
4.探究規(guī)律
問:圓我們可以通過分割、拼合轉(zhuǎn)化成已學過的長方形面積計算公式的圖形推導出圓的面積,圓柱體能不能也轉(zhuǎn)化成已學過體積的圖形來求出它的體積呢?下面請四人小組討論,圍繞下面幾個問題進行討論、操作:
課件出示操作討論提綱:
?。?)圓柱體可以轉(zhuǎn)化為什么樣的立體圖形?
?。?)轉(zhuǎn)化后的立體圖形體積與圓柱的體積大小是否有變化?
?。?)轉(zhuǎn)化后的形體與與原來圓柱體各部分間的對應關系,推導出圓柱的體積。
學生討論,教師參與小組討論、點撥、操作。
問:下面哪個小組來先進行匯報。
各組派代表邊匯報邊演示。
?。蹖W情預設:學生可能會說圓柱體可以轉(zhuǎn)化為長方體,轉(zhuǎn)化后的長方體不是標準的長方體,只有把圓柱分割的份數(shù)多一些,才可以拼成一個標準的長方體。因為長方體是由圓柱體轉(zhuǎn)化而成的,在轉(zhuǎn)化的過程中,體積既沒有增加,也沒有減少,說明求出了轉(zhuǎn)化后長方體的體積,也就相當于求出了圓柱體的體積。長方體的體積等于圓柱體的體積,長方體的底面積等于圓柱的底面積,長方體的高相當于圓柱體的高。因為長方體的體積=底面積×高,所以,圓柱體的體積=底面積×高。]
問:誰還有補充?(學生補充講解)
教師拿兩個相同的圓柱體體積演示模型演示,邊演示邊講解。
師:同學們看,老師這里有兩個圓柱體,它們的底相同,高也完全相同,這是兩個完全相同的圓柱體。我把其中的一個沿著它的底面直徑剪開,兩等分、四等分、八等分、十六等分,還可以繼續(xù)分割,通過分割、拼合,把圓柱體轉(zhuǎn)化成近似的長方體,如果我把它分割的份數(shù)越多,拼成的圖形就越接近長方體。因為長方體是由圓柱體轉(zhuǎn)化而成的,在轉(zhuǎn)化的過程中,體積既沒有增加,也沒有減少,說明求出了轉(zhuǎn)化后長方體的體積,也就相當于求出了圓柱體的體積。
結合課件演示講解。
師:長方體的體積等于圓柱體的體積,長方體的底面積等于圓柱的底面積,長方體的高相當于圓柱體的高。因為長方體的體積=底面積×高,所以,圓柱體的體積=底面積×高。
師:如果圓柱的體積用V來表示,底面積用S表示,高用h來表示。如何表示圓柱的體積計算公式呢?(板書:V=Sh)
〔設計意圖:學生合作交流,自主探索、經(jīng)歷圓柱體體積計算公式的推導過程,理解和掌握了計算方法,加深了印象,從而體驗探索成功的快樂,激發(fā)學生的學習興趣。學會學習方法,獲得學習經(jīng)驗。達成目標1、3、4、5.〕
5、實際應用
?。?)、師:給你圓柱的底面積和高,你會求圓柱的體積嗎?
例1、一根圓柱形木料,底面積75平方厘米,高是90厘米,它的體積是多少? 學生獨立完成,集體反饋矯正,說思路。
?。?)、完成評價樣題
〔設計意圖:通過嘗試練習加深對圓柱的體積公式的理解,體會計算公式在實際生活中的應用,發(fā)展學生的實踐能力。達成目標2、4. 〕
三、鞏固練習,拓展提高
1、應用公式進行口算:
2、
3、
?。墼O計意圖:第一層次是已知底面積和高求圓柱體積的口算題,面向全體學生;第二個層次是已知底面半徑和高、底面直徑和高、底面周長和高,求體積的三種練習題,面向全體學生;第三個層次是求放入水中物體的體積就是求上升的圓柱形水的體積,面向中上層學生。這樣設計的目的,是考慮使差生吃得消,中等生吃得好,尖子生吃得飽。在做練習過程中,一、二層次的練習板演盡量讓學困生和中等生去做,給他們展示自己的機會。并及時了解學生信息并根據(jù)學生反饋及時調(diào)整教學進程,同時對學生存在的問題及時指導。達成目標2、4. ]
四、全課總結,共談收獲
通過今天的學習,你有什么收獲?
?。墼O計意圖:師生共同小結,學會了什么?怎樣求圓柱的體積?這樣起到強化重點的目的。]
五、課外創(chuàng)新,拓展延伸
長方體可以這樣放(上、下面朝下),還可以這樣放(左、右面朝下),還可哪樣放(前、后面朝下)。 上、下面朝下時求出圓柱的體積=底面積×高,圓柱的體積還有沒
《圓柱的體積》教學設計10
一、復習導入
1、回顧上節(jié)課內(nèi)容,提問:圓柱的特征,圓柱的表面積計算方法。
導入:這節(jié)課我們學習圓柱的體積、
2、想一想,提問:什么叫做體積?我們學過哪些物體的體積計算公式?
?。ㄎ矬w所占空間的大小叫做體積、學過長方體正方體的、)
它們的計算公式是什么?可以歸納為:
長(正)方體的體積===底面積*高
3、想一想:圓面積計算公式的推導過程、
(把圓面積轉(zhuǎn)化為一個近似的長方形的面積,從而推導出圓面積的計算公式)
那么,能不能把圓柱轉(zhuǎn)化為我們已學過的圖形來計算它的體積?
二、新授:
敘:以上研究圓面積計算公式的方法叫做割補法,這種方法也適用于推導圓柱體積的計算公式、下面請同學們打開課本看書自學。
演示并提問:
(1)拼成的長方體的體積與圓柱的體積有什么關系?
?。?)拼成的長方體的底面積與圓柱的哪部分有關系?有什么關系?
(3)拼成的長方體的高與圓柱的哪部分有關系?有什么關系?
總結:長方體的'體積與圓柱的體積相等,長方體的底面積與圓柱的底面積相等,長方體的高與圓柱的高相等。
因為:圓柱的體積===長方體的體積
長方體的體積===底面積*高
↓↓↓
所以:圓柱的體積===底面積*高
用字母表示為:v==sh
運用以上公式,完成練習題、
?。ㄗ⒁猓簡挝灰y(tǒng)一,要認真審題,認真計算、)
動腦筋,思考以下幾個問題:
已知如下條件,如何求圓柱的體積?
?。?)底面積s、高h→→體積v==
(2)底面半徑r、高h→→體積v==
(3)底面直徑d、高h→→體積v==
(4)底面周長c、高h→→體積v==
強調(diào):圓柱的體積v=sh=rh,在沒有告訴底面積和高時,要先找底面半徑和高,應用v=rh去計算。
三、鞏固練習(填表)
hvs=20平方分米
4分米
r=5厘米
10厘米
d=8分米
6分米
c=12、56米
2米
四、課堂小結
同學們,通過這堂課的學習你知道了些什么?誰來說一下。
回答得非常好,下去以后可以應用所學知識去解答一些實際問題。
板書設計:
圓柱的體積
圓柱的體積===底面積*高
↓↓↓
長方體的體積===底面積*高v==sh
作業(yè)設計:完成習題
《圓柱的體積》教學設計11
評價樣題:
學習流程:
一、創(chuàng)設現(xiàn)實情境,增強探究欲望。
1、出示橡皮泥做的圓柱體:怎樣求出這個圓柱體橡皮泥的體積?你能想出幾種辦法?
如果要求(出示百家姓廣場上的圓柱形大鼎底座圖片)圓柱形大鼎底座的體積,還能用剛才那樣的方法嗎?那怎么辦?(學生試說出自己的辦法。)
看起來前面這些方法雖然可行,但有一定的局限性,我們必須找到一個解決任意圓柱體積的方法才行,對嗎?今天,就讓我們來共同研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)
二、親歷建構過程,提高探索能力。
1、提出問題,大膽猜想
你能猜一猜圓柱的體積怎樣計算嗎?你覺得圓柱體積的大小和什么有關?
?。ü膭顚W生大膽猜測,說出自己的想法)
2、回顧舊知,幫助遷移
同學們都很會大膽猜想,但還要小心地論證猜想的科學性。你還記得圓面積轉(zhuǎn)化什么圖形的面積來求它的公式的嗎?
?。ㄑ菔菊n件:圓轉(zhuǎn)化成長方形)
3、引發(fā)思考:我們能否把圓柱體也轉(zhuǎn)化成學過的立體圖形來計算它的體積呢?如果能,猜一猜能轉(zhuǎn)化成哪種立體圖形?
4、小組合作,驗證猜想
下面請大家四人一組,借助手中的學具或用蘿卜和土豆做成的圓柱分組進行探討。
?。ǔ鍪竞献魈峋V)小組長做好分工,并完成記錄表。
活動記錄表
思考:
1、圓柱體可以轉(zhuǎn)化成哪種立體圖形?
2、兩種立體圖形之間有怎樣的聯(lián)系?你們發(fā)現(xiàn)了什么?得出了什么結論?
3、怎樣用簡捷的形式表示你推導出來的公式呢?
活動過程:
1、我們用方法,把圓柱體轉(zhuǎn)化成了體。
2、在這個轉(zhuǎn)化的過程中,變了,沒有變。
3、通過觀察比較,我們發(fā)現(xiàn):把一個圓柱體的底面分成許多相等的扇形,然后切、拼,就能得到一個近似的`長方體。這個長方體的底面積等于圓柱體的(),高就是圓柱體的()。因為,長方體體積=(),所以,圓柱體的體積計算公式是v=()。
5、全班交流,展示評價。
評價交流中,借助評價樣題。同時課件演示切拼的過程,同時演示將圓柱底面等分成32份、64份……,讓學生明確:分成的扇形越多,拼成的立體圖形就越接近于長方體。 6、根據(jù)學生的發(fā)現(xiàn)引導學生推導出:
圓柱的體積=底面積×高,
用字母表示v = sh。
7、反饋練習。
?。?)要求圓柱體積,必須知道哪些條件?
?。?)出示例5,學生借助圓柱體積公式自主完成,并及時訂正反饋。
圓柱的體積教學設計 相關內(nèi)容:用轉(zhuǎn)化的策略解決分數(shù)問題“長方體和正方體的表面積”的教學實錄小學數(shù)學《倒數(shù)的認識》教案北師大版6年級數(shù)學第11冊第1單元《圓的認識》教案1、分數(shù)四則混合運算《按比例分配》課后反思百分數(shù)的意義和讀寫法反思百分數(shù)(三)用百分數(shù)解決問題查看更多>>小學六年級數(shù)學教案
《圓柱的體積》教學設計12
一、教學內(nèi)容:
人教版六年級數(shù)學下冊圓柱的體積
二、教學目的:
1、通過用切割拼合的方法借助長方體的體積公式推導出圓柱的體積公式,能夠運用公式正確地計算圓柱的體積和容積。
2、初步學會用轉(zhuǎn)化的數(shù)學思想和方法,解決實際問題的能力
3、滲透轉(zhuǎn)化思想,培養(yǎng)學生的自主探索意識。
三、教學重難點:
難點:掌握圓柱體積的計算公式。
難點:圓柱體積的計算公式的推導。
四、教具準備:
多媒體課件
教學過程:
一、復習回顧
1、物體所占( )叫做物體的體積
1、長方體的體積=()×()×()=( )×()
3、復習圓面積計算公式的推導過程:把圓等分切割,拼成一個近似的長方形,找出圓和所拼成的長方形之間的關系,再利用求長方形面積的計算公式導出求圓面積的計算公式S=πr2。
(設計意圖:激發(fā)學習興趣,加強新舊知識的聯(lián)系,理解數(shù)學轉(zhuǎn)化的思想方法。)
二、探究新知
1、圓柱體積計算公式的`推導。
?。?)用將圓轉(zhuǎn)化成長方形來求出圓的面積的方法來推導圓柱的體積。(沿著圓柱底面的扇形和圓柱的高把圓柱切開,可以得到大小相等的16塊,把它們拼成一個近似長方體的立體圖形,由于我們分的不夠細,所以看起來還不太像長方體;如果分成的扇形越多,拼成的立體圖形就越接近于長方體了)
?。?)通過觀察,使學生明確:長方體的底面積等于圓柱的底面積,長方體的高就是圓柱的高。(長方體的體積=底面積×高,所以圓柱的體積=底面積×高,V=sh)
(設計意圖:通過實驗觀察、培養(yǎng)學生的觀察能力、分析能力、歸納能力,體會數(shù)學轉(zhuǎn)化的思想方法,運用轉(zhuǎn)化的方法學習新知識,培養(yǎng)學生的學習技能。)
(3)公式拓展 V=sh=πr2
2、例題初探
?。?)初探例題:一根圓柱形鋼材,底面積是40平方厘米,高是25厘米。它的體積是多少立方分米?
(2)閱讀與理解:
?、龠@道題已知什么?求什么?
?、谠鯓佑嬎??
③結果單位怎么樣?
?。?)學生解答、點評
(設計意圖:加強學生的審題訓練,對基本公式的運用,加強基礎知識的練習習題, 檢查學生運用公式的能力以及單位的換算。)
三、學以致用
李家莊挖了一口圓柱形水井,地面以下的井深10m, 底面直徑為1m.挖出的土有多少立方米?
?。ㄔO計意圖:加強學生的審題訓練,對公式的靈活運用,提升學生的解題能力,加強數(shù)學與生活的聯(lián)系。)
四、課堂小結
同學們,我們學習了圓柱的體積計算,你有什么收獲呢?讓我們課后解決一些有關圓柱體積計算的實際問題。
?。ㄔO計意圖:發(fā)揮學生的想象,提高學生的整理能力,激發(fā)學生課后的探究欲望,從而提高學生的數(shù)學水平。)
板書設計:
圓柱的體積
長方體的體積=底面積×高
圓柱的體積=底面積×高
V=sh=πr2
《圓柱的體積》教學設計12篇 圓柱的體積教學設計一等獎相關文章:
★ 《螞蟻和蟈蟈》教學設計7篇(螞蟻和蟈蟈教案中班設計意圖)
★ 散步教學設計6篇
★ 《小小的船》第一課時教學設計3篇 小小的船第一課時優(yōu)秀教學設計