下面是范文網(wǎng)小編分享的高中數(shù)學優(yōu)秀教案3篇(高中數(shù)學優(yōu)秀教案范文),供大家閱讀。

高中數(shù)學優(yōu)秀教案1
一、教學目標:
掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關性質(zhì)解決諸如平面幾何、解析幾何等的問題。
二、教學重點:
向量的性質(zhì)及相關知識的綜合應用。
三、教學過程:
(一)主要知識:
1、掌握向量的概念、坐標表示、運算性質(zhì),做到融會貫通,能應用向量的有關性質(zhì)解決諸如平面幾何、解析幾何等的問題。
(二)例題分析:略
四、小結:
1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,
2、滲透數(shù)學建模的思想,切實培養(yǎng)分析和解決問題的能力。
五、作業(yè):
略
高中數(shù)學優(yōu)秀教案2
[學習目標]
(1)會用坐標法及距離公式證明Cα+β;
(2)會用替代法、誘導公式、同角三角函數(shù)關系式,由Cα+β推導Cα—β、Sα±β、Tα±β,切實理解上述公式間的關系與相互轉化;
(3)掌握公式Cα±β、Sα±β、Tα±β,并利用簡單的三角變換,解決求值、化簡三角式、證明三角恒等式等問題。
[學習重點]
兩角和與差的正弦、余弦、正切公式
[學習難點]
余弦和角公式的推導
[知識結構]
1、兩角和的余弦公式是三角函數(shù)一章和、差、倍公式系列的基礎。其公式的證明是用坐標法,利用三角函數(shù)定義及平面內(nèi)兩點間的距離公式,把兩角和α+β的余弦,化為單角α、β的三角函數(shù)(證明過程見課本)
2、通過下面各組數(shù)的值的比較:①cos(30°—90°)與cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我們應該得出如下結論:一般情況下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。
3、當α、β中有一個是的整數(shù)倍時,應首選誘導公式進行變形。注意兩角和與差的三角函數(shù)是誘導公式等的基礎,而誘導公式是兩角和與差的三角函數(shù)的特例。
4、關于公式的正用、逆用及變用
高中數(shù)學優(yōu)秀教案3
一、教學目標
【知識與技能】
掌握三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
【過程與方法】
經(jīng)歷三角函數(shù)的單調(diào)性的探索過程,提升邏輯推理能力。
【情感態(tài)度價值觀】
在猜想計算的過程中,提高學習數(shù)學的興趣。
二、教學重難點
【教學重點】
三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍。
【教學難點】
探究三角函數(shù)的單調(diào)性以及三角函數(shù)值的取值范圍過程。
三、教學過程
(一)引入新課
提出問題:如何研究三角函數(shù)的單調(diào)性
(二)小結作業(yè)
提問:今天學習了什么?
引導學生回顧:基本不等式以及推導證明過程。
課后作業(yè):
思考如何用三角函數(shù)單調(diào)性比較三角函數(shù)值的大小。
高中數(shù)學優(yōu)秀教案3篇(高中數(shù)學優(yōu)秀教案范文)相關文章:
★ 高中數(shù)學年終總結3篇(高中數(shù)學年終個人總結)
★ 最新四年級數(shù)學下教案范文3篇 人教版四年級下數(shù)學教案詳案
★ 數(shù)學八年級上教案3篇 八年級上冊數(shù)學活動教案
★ 高中英語教師資格證教案模板4篇(中學教師資格證英語教案模板)
★ 高中數(shù)學教師培訓心得體會3篇 高中數(shù)學骨干教師培訓心得體會
★ 小學數(shù)學教案編寫模板4篇 人教版小學數(shù)學教學設計模板范文
★ 精選小學數(shù)學教案范文6篇(小學數(shù)學教學案例范文大全簡短)
★ 小學數(shù)學100以內(nèi)加減法教案3篇(100以內(nèi)數(shù)的加減法教案)