亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

高三數(shù)學(xué)數(shù)列教案5篇(高三數(shù)列教學(xué)反思)

時間:2024-05-20 14:08:00 教案

  下面是范文網(wǎng)小編收集的高三數(shù)學(xué)數(shù)列教案5篇(高三數(shù)列教學(xué)反思),供大家閱讀。

高三數(shù)學(xué)數(shù)列教案5篇(高三數(shù)列教學(xué)反思)

高三數(shù)學(xué)數(shù)列教案1

  教學(xué)目標(biāo):明確等差數(shù)列的定義,掌握等差數(shù)列的通項公式,會解決知道an,a1,d,n中的三個,求另外一個的問題;培養(yǎng)學(xué)生觀察能力,進(jìn)一步提高學(xué)生推理、歸納能力,培養(yǎng)學(xué)生的'應(yīng)用意識.

  教學(xué)重點:1.等差數(shù)列的概念的理解與掌握. 2.等差數(shù)列的通項公式的推導(dǎo)及應(yīng)用.教學(xué)難點:等差數(shù)列“等差”特點的理解、把握和應(yīng)用.教學(xué)過程:

  Ⅰ.復(fù)習(xí)回顧上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法——通項公式和遞推公式.這兩個公式從不同的角度反映數(shù)列的特點,下面我們看這樣一些例子

 ?、?講授新課10,8,6,4,2,…; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,…首先,請同學(xué)們仔細(xì)觀察這些數(shù)列有什么共同的特點?是否可以寫出這些數(shù)列的通項公式?(引導(dǎo)學(xué)生積極思考,努力尋求各數(shù)列通項公式,并找出其共同特點)它們的共同特點是:從第2項起,每一項與它的前一項的“差”都等于同一個常數(shù).也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點.具有這種特點的數(shù)列,我們把它叫做等差數(shù)列.

  1.定義等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

  2.等差數(shù)列的通項公式等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得.若一等差數(shù)列{an}的首項是a1,公差是d,則據(jù)其定義可得:(n-1)個等式若將這n-1個等式左右兩邊分別相加,則可得:an-a1=(n-1)d即:an=a1+(n-1)d當(dāng)n=1時,等式兩邊均為a1,即上述等式均成立,則對于一切n∈N-時上述公式都成立,所以它可作為數(shù)列{an}的通項公式.看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項a1和公差d,便可求得其通項.由通項公式可類推得:am=a1+(m-1)d,即:a1=am-(m-1)d,則:an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d.如:a5=a4+d=a3+2d=a2+3d=a1+4d

  請同學(xué)們來思考這樣一個問題.如果在a與b中間插入一個數(shù)A,使a、A、b成等差數(shù)列,那么A應(yīng)滿足什么條件?由等差數(shù)列定義及a、A、b成等差數(shù)列可得:A-a=b-A,即:a=.反之,若A=,則2A=a+b,A-a=b-A,即a、A、b成等差數(shù)列.總之,A= a,A,b成等差數(shù)列.如果a、A、b成等差數(shù)列,那么a叫做a與b的`等差中項.例題講解[

  例1]在等差數(shù)列{an}中,已知a5=10,a15=25,求a25.

  思路一:根據(jù)等差數(shù)列的已知兩項,可求出a1和d,然后可得出該數(shù)列的通項公式,便可求出a25.

  思路二:若注意到已知項為a5與a15,所求項為a25,則可直接利用關(guān)系式an=am+(n-m)d.這樣可簡化運算.思路三:若注意到在等差數(shù)列{an}中,a5,a15,a25也成等差數(shù)列,則利用等差中項關(guān)系式,便可直接求出a25的值.

  [例2](1)求等差數(shù)列8,5,2…的第20項.分析:由給出的三項先找到首項a1,求出公差d,寫出通項公式,然后求出所要項

  答案:這個數(shù)列的第20項為-49. (2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?分析:要想判斷-401是否為這數(shù)列的一項,關(guān)鍵要求出通項公式,看是否存在正整數(shù)n,可使得an=-401. ∴-401是這個數(shù)列的第100項.

 ?、?課堂練習(xí)

  1.(1)求等差數(shù)列3,7,11,……的'第4項與第10項.

  (2)求等差數(shù)列10,8,6,……的第20項. (3)100是不是等差數(shù)列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由. 2.在等差數(shù)列{an}中,

  (1)已知a4=10,a7=19,求a1與d;

  (2)已知a3=9,a9=3,求a12.

 ?、?課時小結(jié)通過本節(jié)學(xué)習(xí),首先要理解與掌握等差數(shù)列的定義及數(shù)學(xué)表達(dá)式:an-an-1=d(n≥2).其次,要會推導(dǎo)等差數(shù)列的通項公式:an=a1+(n-1)d(n≥1),并掌握其基本應(yīng)用.最后,還要注意一重要關(guān)系式:an=am+(n-m)d的理解與應(yīng)用以及等差中項。

  Ⅴ.課后作業(yè)課本P39習(xí)題1,2,3,4

高三數(shù)學(xué)數(shù)列教案2

  一、教材分析

  1、教材的地位和作用:

  數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。

  2、教學(xué)目標(biāo)

  根據(jù)教學(xué)大綱的要求和學(xué)生的實際水平,確定了本次課的教學(xué)目標(biāo)

  a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建模”的思想方法并能運用。

  b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。

  c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

  3、教學(xué)重點和難點

  根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點為:

  ①等差數(shù)列的概念。

  ②等差數(shù)列的通項公式的.推導(dǎo)過程及應(yīng)用。

  由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學(xué)生對“數(shù)學(xué)建?!钡乃枷敕椒ㄝ^為陌生,因此用數(shù)學(xué)思想解決實際問題是本節(jié)課的另一個難點。

  二、學(xué)情教法分析:

  對于三中的高一學(xué)生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進(jìn)思維能力的進(jìn)一步發(fā)展。

  針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。

  三、學(xué)法指導(dǎo):

  在引導(dǎo)分析時,留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

  四、教學(xué)程序

  本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用舉例(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個教學(xué)環(huán)節(jié)構(gòu)成。

  (一)復(fù)習(xí)引入:

  1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______。(N﹡;解析式)

  通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備。

  2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92 ①

  3.小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25 ②

  通過練習(xí)2和3引出兩個具體的等差數(shù)列,初步認(rèn)識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情站境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。

  (二)新課探究

  1、由引入自然的給出等差數(shù)列的概念:

  如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,

  這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強(qiáng)調(diào):

 ?、?“從第二項起”滿足條件;

 ?、诠頳一定是由后項減前項所得;

 ?、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強(qiáng)調(diào)“同一個常數(shù)” );

  在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達(dá)式:

  an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

  1. 9,8,7,6,5,4,……;√ d=-1

  2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

  3. 0,0,0,0,0,0,…….; √ d=0

  4. 1,2,3,2,3,4,……;×

  5. 1,0,1,0,1,……×

  其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0

  由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0

  2、第二個重點部分為等差數(shù)列的通項公式

  在歸納等差數(shù)列通項公式中,我采用討論式的教學(xué)方法,

  資料共享平臺

  《高中數(shù)學(xué)說課稿:等差數(shù)列》(  若一等差數(shù)列{an }的首項是a1,公差是d,則據(jù)其定義可得:

  a2 - a1 =d即:a2 =a1 +d

  a3 – a2 =d即:a3 =a2 +d = a1 +2d

  a4 – a3 =d即:a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d,進(jìn)而歸納出等差數(shù)列的通項公式:

  an=a1+(n-1)d

  此時指出:這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ……

  an – an-1=d

  將這(n-1)個等式左右兩邊分別相加,就可以得到an– a1= (n-1) d即an= a1+(n-1) d (1)

  當(dāng)n=1時,(1)也成立,

  所以對一切n∈N﹡,上面的公式都成立

  因此它就是等差數(shù)列{an}的通項公式。

  在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。

  利用等差數(shù)列概念啟發(fā)學(xué)生寫出n-1個等式。

  對照已歸納出的通項公式啟發(fā)學(xué)生想出將n-1個等式相加。證出通項公式。

  在這里通過該知識點引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想”的教學(xué)要求

  接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)×2,

  即an=2n-1以此來鞏固等差數(shù)列通項公式運用

  同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

  (三)應(yīng)用舉例

  這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。

  例1 (1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項

  (2)-401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?

  在第一問中我添加了計算第30項和第40項以加強(qiáng)鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an.

  例2在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。

  在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固

  例3是一個實際建模問題

  建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?

  這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺階“等高”使學(xué)生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實際問題轉(zhuǎn)化為數(shù)學(xué)模型------等差數(shù)列:(學(xué)生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學(xué)生認(rèn)為是16項,應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。

  設(shè)置此題的目的:1.加強(qiáng)同學(xué)們對應(yīng)用題的綜合分析能力,2.通過數(shù)學(xué)實際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;3.再者通過數(shù)學(xué)實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實際問題的“數(shù)學(xué)建模”的數(shù)學(xué)思想方法

  (四)反饋練習(xí)

  1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進(jìn)行基本技能訓(xùn)練。

  2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

  目的:對學(xué)生加強(qiáng)建模思想訓(xùn)練。

  3、若數(shù)例{an}是等差數(shù)列,若bn = k an,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

  此題是對學(xué)生進(jìn)行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時強(qiáng)化了等差數(shù)列的概念。

  (五)歸納小結(jié)(由學(xué)生總結(jié)這節(jié)課的收獲)

  1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式.

  強(qiáng)調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

  2.等差數(shù)列的通項公式an= a1+(n-1) d會知三求一

  3.用“數(shù)學(xué)建模”思想方法解決實際問題

  (六)布置作業(yè)

  必做題:課本P114習(xí)題3.2第2,6題

  選做題:已知等差數(shù)列{an}的首項a1=-24,從第10項開始為正數(shù),求公差d的取值范圍。

  (目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)

  五、板書設(shè)計

  在板書中突出本節(jié)重點,將強(qiáng)調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標(biāo)注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。

高三數(shù)學(xué)數(shù)列教案3

  數(shù)列

  §3.1.1數(shù)列、數(shù)列的通項公式目的:要求學(xué)生理解數(shù)列的概念及其幾何表示,理解什么叫數(shù)列的通項公式,給出一些數(shù)列能夠?qū)懗銎渫椆剑阎椆侥軌蚯髷?shù)列的項。

  重點:1數(shù)列的概念。按一定次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做數(shù)列的項,數(shù)列的第n項an叫做數(shù)列的通項(或一般項)。由數(shù)列定義知:數(shù)列中的數(shù)是有序的,數(shù)列中的數(shù)可以重復(fù)出現(xiàn),這與數(shù)集中的數(shù)的無序性、互異性是不同的。

  2.數(shù)列的通項公式,如果數(shù)列{an}的通項an可以用一個關(guān)于n的公式來表示,這個公式就叫做數(shù)列的通項公式。從映射、函數(shù)的觀點看,數(shù)列可以看成是定義域為正整數(shù)集N-(或?qū)挼挠邢拮蛹?的函數(shù)。當(dāng)自變量順次從小到大依次取值時對自學(xué)成才的一列函數(shù)值,而數(shù)列的通項公式則是相應(yīng)的解析式。由于數(shù)列的項是函數(shù)值,序號是自變量,所以以序號為橫坐標(biāo),相應(yīng)的項為縱坐標(biāo)畫出的圖像是一些孤立的點。難點:根據(jù)數(shù)列前幾項的特點,以現(xiàn)規(guī)律后寫出數(shù)列的通項公式。給出數(shù)列的'前若干項求數(shù)列的通項公式,一般比較困難,且有的數(shù)列不一定有通項公式,如果有通項公式也不一定唯一。給出數(shù)列的前若干項要確定其一個通項公式,解決這個問題的關(guān)鍵是找出已知的每一項與其序號之間的對應(yīng)關(guān)系,然后抽象成一般形式。過程:一、從實例引入(P110)1.堆放的鋼管4,5,6,7,8,9,102.正整數(shù)的倒數(shù)

  3. 4. -1的正整數(shù)次冪:-1,1,-1,1,…

  5.無窮多個數(shù)排成一列數(shù):1,1,1,1,…

  二、提出課題:數(shù)列

  1.數(shù)列的定義:按一定次序排列的一列數(shù)(數(shù)列的有序性)

  2.名稱:項,序號,一般公式,表示法

  3.通項公式:與之間的函數(shù)關(guān)系式如數(shù)列1:數(shù)列2:數(shù)列4:

  4.分類:遞增數(shù)列、遞減數(shù)列;常數(shù)列;擺動數(shù)列;有窮數(shù)列、無窮數(shù)列。

  5.實質(zhì):從映射、函數(shù)的觀點看,數(shù)列可以看作是一個定義域為正整數(shù)集N-(或它的有限子集{1,2,…,n})的函數(shù),當(dāng)自變量從小到大依次取值時對應(yīng)的一列函數(shù)值,通項公式即相應(yīng)的函數(shù)解析式。

  6.用圖象表示:—是一群孤立的點例一(P111例一略)

  三、關(guān)于數(shù)列的通項公式1.不是每一個數(shù)列都能寫出其通項公式(如數(shù)列3)

  2.數(shù)列的通項公式不唯一如:數(shù)列4可寫成和

  3.已知通項公式可寫出數(shù)列的任一項,因此通項公式十分重要例二(P111例二)略

  四、補(bǔ)充例題:寫出下面數(shù)列的一個通項公式,使它的前項分別是下列各數(shù):1.1,0,1,0. 2.,,,,3.7,77,777,7777 4.-1,7,-13,19,-25,31 5.,,,

  五、小結(jié):1.數(shù)列的有關(guān)概念2.觀察法求數(shù)列的通項公式

  六、作業(yè):練習(xí)P112習(xí)題3.1(P114)1、2

  七、練習(xí):1.觀察下面數(shù)列的特點,用適當(dāng)?shù)臄?shù)填空,關(guān)寫出每個數(shù)列的一個通項公式;(1),,,( ),,…(2),( ),,,…

  2.寫出下面數(shù)列的一個通項公式,使它的前4項分別是下列各數(shù):(1)1、 、 、 ; (2) 、 、 、 ; (3) 、 、 、 ; (4) 、 、 、 。

  3.求數(shù)列1,2,2,4,3,8,4,16,5,…的一個通項公式

  4.已知數(shù)列an的前4項為0,,0,,則下列各式①an= ②an= ③an=其中可作為數(shù)列{an}通項公式的是A ① B ①② C ②③ D ①②③

  5.已知數(shù)列1,,,,3,…,,…,則是這個數(shù)列的( ) A.第10項B.第11項C.第12項D.第21項

  6.在數(shù)列{an}中a1=2,a17=66,通項公式或序號n的一次函數(shù),求通項公式。

  7.設(shè)函數(shù)( ),數(shù)列{an}滿足(1)求數(shù)列{an}的通項公式;(2)判斷數(shù)列{an}的單調(diào)性。

  8.在數(shù)列{an}中,an=(1)求證:數(shù)列{an}先遞增后遞減;(2)求數(shù)列{an}的最大項。答案:1. (1),an= (2),an= 2.(1)an= (2)an= (3)an= (4)an= 3.an=或an=這里借助了數(shù)列1,0,1,0,1,0…的通項公式an=。4.D 5.B 6. an=4n-2

  7.(1)an= (2)<1又an<0, ∴是遞增數(shù)列

高三數(shù)學(xué)數(shù)列教案4

  如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),這個數(shù)列就叫做等比數(shù)列。這個常數(shù)叫做等比數(shù)列的.公比,公比通常用字母q表示。

  (1)等比數(shù)列的通項公式是:An=A1×q^(n-1)

  若通項公式變形為an=a1/q-q^n(n∈N-),當(dāng)q>0時,則可把a(bǔ)n看作自變量n的函數(shù),點(n,an)是曲線y=a1/q-q^x上的一群孤立的點。

  (2)任意兩項am,an的關(guān)系為an=am·q^(n-m)

  (3)從等比數(shù)列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。

  (5)等比求和:Sn=a1+a2+a3+.......+an

  ①當(dāng)q≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

  ②當(dāng)q=1時,Sn=n×a1(q=1)

  記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一個各項均為正數(shù)的等比數(shù)列各項取同底數(shù)數(shù)后構(gòu)成一個等差數(shù)列;反之,以任一個正數(shù)C為底,用一個等差數(shù)列的各項做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個意義下,我們說:一個正項等比數(shù)列與等差數(shù)列是“同構(gòu)”的。

高三數(shù)學(xué)數(shù)列教案5

  一、課前檢測

  1.在數(shù)列{an}中,an=1n+1+2n+1++nn+1,又bn=2anan+1,求數(shù)列{bn}的前n項的和.

  解:由已知得:an=1n+1(1+2+3++n)=n2,

  bn=2n2n+12=8(1n-1n+1) 數(shù)列{bn}的前n項和為

  Sn=8[(1-12)+(12-13)+(13-14)++(1n-1n+1)]=8(1-1n+1)=8nn+1.

  2.已知在各項不為零的數(shù)列 中, 。

  (1)求數(shù)列 的通項;

  (2)若數(shù)列 滿足 ,數(shù)列 的前 項的和為 ,求

  解:(1)依題意, ,故可將 整理得:

  所以 即

  ,上式也成立,所以

  (2)

  二、知識梳理

  (一)前n項和公式Sn的定義:Sn=a1+a2+an。

  (二)數(shù)列求和的方法(共8種)

  5.錯位相減法:適用于差比數(shù)列(如果 等差, 等比,那么 叫做差比數(shù)列)即把每一項都乘以 的公比 ,向后錯一項,再對應(yīng)同次項相減,轉(zhuǎn)化為等比數(shù)列求和。

  如:等比數(shù)列的前n項和就是用此法推導(dǎo)的`.

  解讀:

  6.累加(乘)法

  解讀:

  7.并項求和法:一個數(shù)列的前n項和中,可兩兩結(jié)合求解,則稱之為并項求和.

  形如an=(-1)nf(n)類型,可采用兩項合并求。

  解讀:

  8.其它方法:歸納、猜想、證明;周期數(shù)列的求和等等。

  解讀:

  三、典型例題分析

  題型1 錯位相減法

  例1 求數(shù)列 前n項的和.

  解:由題可知{ }的通項是等差數(shù)列{2n}的通項與等比數(shù)列{ }的通項之積

  設(shè) ①

 ?、?(設(shè)制錯位)

  ①-②得 (錯位相減)

  變式訓(xùn)練1 (20xx昌平模擬)設(shè)數(shù)列{an}滿足a1+3a2+32a3++3n-1an=n3,nN*.

  (1)求數(shù)列{an}的通項公式;

  (2)設(shè)bn=nan,求數(shù)列{bn}的前n項和Sn.

  解:(1)∵a1+3a2+32a3++3n-1an=n3, ①

  當(dāng)n2時,a1+3a2+32a3++3n-2an-1=n-13. ②

 ?、?②得3n-1an=13,an=13n.

  在①中,令n=1,得a1=13,適合an=13n, an=13n.

  (2)∵bn=nan,bn=n3n.

  Sn=3+232+333++n 3n, ③

  3Sn=32+233+334++n 3n+1. ④

 ?、?③得2Sn=n 3n+1-(3+32+33++3n),

  即2Sn=n 3n+1-3(1-3n)1-3, Sn=(2n-1)3n+14+34.

  小結(jié)與拓展:

  題型2 并項求和法

  例2 求 =1002-992+982-972++22-12

  解: =1002-992+982-972++22-12=(100+ 99)+(98+97)++(2+1)=5050.

  變式訓(xùn)練2 數(shù)列{(-1)nn}的前20xx項的和S2 010為( D )

  A.-20xx B.-1005 C.20xx D.1005

  解:S2 010=-1+2-3+4-5++2 008-2 009+2 010

  =(2-1)+(4-3)+(6-5)++(2 010-2 009)=1 005.

  小結(jié)與拓展:

  題型3 累加(乘)法及其它方法:歸納、猜想、證明;周期數(shù)列的求和等等

  例3 (1)求 之和.

  (2)已知各項均為正數(shù)的數(shù)列{an}的前n項的乘積等于Tn= (nN*),

  ,則數(shù)列{bn}的前n項和Sn中最大的一項是( D )

  A.S6 B.S5 C.S4 D.S3

  解:(1)由于 (找通項及特征)

  = (分組求和)= =

  =

  (2)D.

  變式訓(xùn)練3 (1)(20xx福州八中)已知數(shù)列 則 , 。答案:100. 5000。

  (2)數(shù)列 中, ,且 ,則前20xx項的和等于( A )

  A.1005 B.20xx C.1 D.0

  小結(jié)與拓展:

  四、歸納與總結(jié)(以學(xué)生為主,師生共同完成)

  以上一個8種方法雖然各有其特點,但總的原則是要善于改變原數(shù)列的形式結(jié)構(gòu),使

  其能進(jìn)行消項處理或能使用等差數(shù)列或等比數(shù)列的求和公式以及其它已知的基本求和公式來解決,只要很好地把握這一規(guī)律,就能使數(shù)列求和化難為易,迎刃而解。

高三數(shù)學(xué)數(shù)列教案5篇(高三數(shù)列教學(xué)反思)相關(guān)文章:

小班數(shù)學(xué)教案實用6篇(小班數(shù)學(xué)活動優(yōu)質(zhì)教案)

大班數(shù)學(xué)教案年媽媽的一家3篇(年媽媽的一家教案反思)

人教版一年級數(shù)學(xué)下冊教案《分類與整理》10篇 一年級下冊數(shù)學(xué)第二單元例6教案

人教版一年級數(shù)學(xué)下冊第三單元教案《分類與整理》5篇 一年級數(shù)學(xué)下冊分類和整理教案

人教版一年級數(shù)學(xué)下冊第三單元教案:《分類與整理》7篇(一年級數(shù)學(xué)下冊分類和整理教案)

《按長短排序》數(shù)學(xué)教案3篇(幼兒園中班數(shù)學(xué)按長短排序教案)

小班數(shù)學(xué)教案模板7篇(小班數(shù)學(xué)優(yōu)秀教案)

數(shù)學(xué)教案:百分?jǐn)?shù)應(yīng)用7篇 百分?jǐn)?shù)的實際應(yīng)用教案

數(shù)學(xué)《擲雙色片》教案3篇 碰球數(shù)學(xué)教案

數(shù)學(xué)教案中班12篇 人教版六年級數(shù)學(xué)教案


亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

                        色综合天天综合色综合av| 亚洲一区二区三区在线播放| 国产精品网友自拍| 日本vs亚洲vs韩国一区三区| 欧美激情中文字幕一区二区| 日本aⅴ精品一区二区三区| 亚洲高清免费一级二级三级| 不卡影院免费观看| 7777精品伊人久久久大香线蕉超级流畅| 亚洲一区二区三区四区不卡| 国产一区二区三区电影在线观看| 欧美日韩视频专区在线播放| 91色porny| 91精品国产综合久久精品| 欧美精品一卡二卡| 久久99国产乱子伦精品免费| 8x8x8国产精品| 麻豆高清免费国产一区| 欧美亚洲国产怡红院影院| 国产精品午夜电影| 国产精品第五页| 国产传媒欧美日韩成人| 欧美日韩激情一区二区| 在线免费观看不卡av| 91精品国产福利在线观看| 亚洲午夜精品在线| 欧美一区二区三区日韩视频| 99麻豆久久久国产精品免费优播| 国内外精品视频| 欧美日韩一区二区三区四区| 日韩国产成人精品| 日韩三区在线观看| 一区二区三区日韩欧美精品| 国内成+人亚洲+欧美+综合在线| 亚洲视频免费看| 午夜视频一区在线观看| 日韩欧美一区二区免费| 麻豆精品在线播放| 亚洲欧美偷拍另类a∨色屁股| 久久久久99精品国产片| 色综合久久久久久久久| 日韩视频在线你懂得| 精品一区二区三区免费播放| 视频在线观看一区| 五月婷婷综合网| 午夜视频在线观看一区二区三区| 欧美高清激情brazzers| 久久夜色精品国产欧美乱极品| 国产视频一区在线播放| 亚洲精品成a人| 中文字幕亚洲欧美在线不卡| 五月天一区二区三区| 久久久久久久久99精品| 国产精品午夜免费| 亚洲成人综合网站| 日韩中文欧美在线| 久久精品二区亚洲w码| 欧美一区二区三区色| 2021中文字幕一区亚洲| 亚洲综合激情另类小说区| 欧美三区在线观看| 久久99在线观看| 日韩在线卡一卡二| 欧美久久一二区| 亚洲国产精品99久久久久久久久| 一本一本久久a久久精品综合麻豆| 亚洲成a天堂v人片| 美女视频网站黄色亚洲| 中文字幕一区二区三区av| 欧美一区二区在线视频| 久久精品一区二区三区不卡| 日韩极品在线观看| 国产精品人成在线观看免费| 国产精品天干天干在线综合| 精品国产一区a| 国产米奇在线777精品观看| 91精品一区二区三区久久久久久| 国产精品免费免费| 成人国产精品视频| 成人免费高清视频| 精品国产91洋老外米糕| 日韩一级视频免费观看在线| 日韩精品一区二区三区蜜臀| 欧美综合亚洲图片综合区| 日韩中文字幕av电影| 一区二区视频在线看| 国产伦精品一区二区三区在线观看| 成人免费黄色大片| 欧美aaaaa成人免费观看视频| 欧美一区二区三区性视频| 91精品国产全国免费观看| 国产精品二三区| 国内偷窥港台综合视频在线播放| 亚洲成人资源网| 不卡电影免费在线播放一区| 久久久久88色偷偷免费| 一区二区三区成人| 免费在线看成人av| 亚洲综合视频在线观看| 亚洲激情图片一区| 中文字幕一区在线观看视频| 五月天一区二区三区| 欧美视频精品在线| 4438x成人网最大色成网站| 欧美日韩视频不卡| 国产一区二区三区黄视频| 欧美伦理电影网| 欧美一区二区三区在| 国产精品视频一区二区三区不卡| 亚洲一区二区黄色| 亚洲午夜一区二区三区| 日本黄色一区二区| 一级精品视频在线观看宜春院| 婷婷国产在线综合| 色婷婷综合久久久中文字幕| 天天综合天天综合色| 日韩欧美一区二区久久婷婷| 午夜电影一区二区| 成人99免费视频| 国产精品美女久久久久久2018| 国产精品国产三级国产普通话99| 成人午夜电影网站| 亚洲国产日韩av| 青青草原综合久久大伊人精品| 欧美日韩三级一区二区| 色哟哟日韩精品| 国产91精品在线观看| 国产九九视频一区二区三区| 91精品免费在线| 国产午夜精品一区二区三区四区| 7878成人国产在线观看| 中文字幕 久热精品 视频在线| 精品一区精品二区高清| 久久婷婷国产综合国色天香| 97久久精品人人爽人人爽蜜臀| 高清视频一区二区| 成人午夜电影小说| **欧美大码日韩| 国产99久久久国产精品免费看| 日韩美女主播在线视频一区二区三区| 久久精品免视看| 欧美精品一区二区三区蜜桃| 久久99久久99精品免视看婷婷| 一区二区三区四区亚洲| 一区二区三区四区蜜桃| 蜜臀av国产精品久久久久| 国产精品色婷婷久久58| 精品亚洲porn| 综合在线观看色| 国产精品久久毛片a| 国产成人午夜片在线观看高清观看| 精品视频一区二区三区免费| 国产精品不卡视频| 欧美成人精品福利| 91豆麻精品91久久久久久| 成人av在线影院| 一本大道久久a久久精二百| 亚洲成人1区2区| 欧美国产97人人爽人人喊| av亚洲精华国产精华精华| 成人爱爱电影网址| 亚洲精品美腿丝袜| 亚洲国产成人av网| 婷婷综合在线观看| 国产成人在线视频网址| 欧美这里有精品| 日本强好片久久久久久aaa| 欧美午夜精品久久久久久超碰| 国产精品白丝jk白祙喷水网站| 欧美日韩精品免费观看视频| 777色狠狠一区二区三区| 91麻豆精品国产自产在线观看一区| 欧美一区三区二区| 国产精品 欧美精品| 日韩高清一区在线| 国产精品欧美久久久久无广告| 欧美一区二区视频网站| 国产乱码精品1区2区3区| 日韩av电影天堂| 国产精品动漫网站| 国精产品一区一区三区mba视频| 免费成人结看片| 欧美午夜精品一区二区三区| 欧美四级电影在线观看| 国产精品久久久久久久裸模| 欧美久久一二区| 国产成人小视频| 国产精品视频一二| 亚洲免费在线播放| 成人黄色网址在线观看| 亚洲3atv精品一区二区三区| 欧美日韩精品一二三区| 欧美吞精做爰啪啪高潮| 欧美va亚洲va| 91精品国产色综合久久ai换脸| 亚洲精品va在线观看| 久久精品亚洲国产奇米99| 久久亚洲精精品中文字幕早川悠里| 午夜影院在线观看欧美| 97久久精品人人爽人人爽蜜臀|