下面是范文網小編整理的初一數學下冊教案6篇,以供參考。

初一數學下冊教案1
一、教學目標:
1、探索軸對稱的基本性質,理解對應點所連的線段被對稱軸垂直平分、對應線段相等、對應角相等的性質;
2、能夠按要求作出簡單平面圖形經過軸對稱后的圖形;
3、鼓勵學生利用軸對稱的性質嘗試解決一些實際問題,經歷觀察、分析、作圖等過程,進一步發(fā)展空間觀念,培養(yǎng)學生分析問題的能力和有條理的語言表達能力;
二、教學重點:
1、軸對稱的基本性質,利用軸對稱的性質解決實際問題;
2、進一步發(fā)展學生合作交流的能力和數學表達能力。
三、教學難點:
利用軸對稱的性質解決實際問題。
四、教學過程:
(一)課前準備
1、實驗操作:將一張矩形紙對折,然后用筆尖扎出“14”這個數字,將紙打開后鋪平.
2、合作交流:(1)圖中,兩個“14”有什么關系?
(2)在扎字的過程中,點E與點E/重合,點F與點F/重合.設折痕所在直線為l,連接點E與點E/的'線段與l有什么關系?點F與點F/呢?
(3)線段AB與A/B/有什么關系?CD與C/D/呢?
(4)∠1與∠2有什么關系?∠3與∠4呢?說說你的理由.
在圖中,沿對稱軸對折后,點A與A/重合,稱點A關于對稱軸的對應點是點A/,類似的,線段AB關于對稱軸的對應線段是線段A/B/,∠1關于對稱軸的對應角是∠2。
利用比較直觀的方法使學生比較清晰地觀察到每一組對應點與折痕之間的位置關系以及對應角、對應線段之間的大小關系。
(二)情境引入
學生可以根據折疊過程中的某些元素的重合說明理由,進一步驗證上一個活動得到的結論。
軸對稱的性質:
1、對應點所連的線段被對稱軸垂直平分;
2、對應線段相等,對應角相等.
(三)實戰(zhàn)演習
利用軸對稱設計圖案:
教師可以先鼓勵學生想象完整圖案的形狀,然后鼓勵學生根據軸對稱的性質探索畫出圖案另一半的方法。
(四)鞏固提高
(五)學以致用
(六)反思總結
1、小結:
(1)通過本節(jié)課的學習,你收獲了什么?
(2)本節(jié)課中,你還有什么疑問?
2、作業(yè)習題5.2
板書:
1、軸對稱的性質: (1)對應點所連的線段被對稱軸垂直平分;
(2)對應線段相等,對應角相等。
2、利用軸對稱設計圖案:
已知對稱軸l和一個點A,要畫出點A關于l的對應點A/。
過點A作對稱軸l的垂線,垂足為B,延長AB至A/,使得BA/=AB.點A/就是點A關于直線l的對應點。
3、練習
4、小結作業(yè)
初一數學下冊教案2
3.4 用尺規(guī)作三角形
?。?)預習作業(yè):
2、如圖,在△ABC中,AB=AC,DE是過點A的直線,BD⊥DE于D,CE⊥DE于E.
(1)若BC在DE的同側(如圖①)且AD=CE,求證: .
?。?)若BC在DE的兩側(如圖②)其他條件不變,問:(1)中的結論是否仍然成立?若是請予證明,若不是請說明理由.
3、(1)如圖(1),已知AB=CD,AD=BC,O為AC的中點,過O點的直線分別與AD、BC相交于點M、N,那么∠1與∠2有什么關系?請說明理由.
?。?)若將過O點的直線旋轉至圖(2)、(3)的情況時,其他條件不變,那么圖(1)中∠1與∠2的關系還成立嗎?請說明理由.
4、已知∠AOB=900,在∠AOB的平分線OM上有一點C,將一個三角板的'直角頂點與C重合,它的兩條直角邊分別與OA、OB(或它們的反向延長線)相交于點D、E.
如圖1,當CD OA于D,CE OB于E,易證:CD=CE
當三角板繞點C旋轉到CD與OA不垂直時,在圖2、圖3這兩種情況下,上述結論是否還成立?若成立,請給予證明;若不成立,請寫出你的猜想,不需證明.
初一數學下冊教案3
一、教學目標設計
[知識與技能目標]
1、借助數軸,初步理解絕對值的概念,能求一個數的絕對值,會利用絕對值比較兩個負數的大小。
2、通過應用絕對值解決實際問題,體會絕對值的意義和作用。
[過程與方法目標]
限度的發(fā)揮學生的主體參與,讓學生在教師的引導啟發(fā),師生的交流與探索下,輕松愉快地學到新知識。
[情感態(tài)度與價值觀]
借助數軸解決數學問題,有意識地形成“腦中有圖,心中有數”的數形結合思想,讓學生采取自主探索,合作交流的學習方式。
二、教材解讀
借助數軸引出對絕對值的概念,并通過計算、觀察、交流、發(fā)現(xiàn)絕對值的性質特征,利用絕對值來比較兩個負數的大小。
讓學生直觀理解絕對值的含義,不要在絕對值符號內部出現(xiàn)多重符號和
字母,多鼓勵學生通過觀察、歸納、驗證。
教學過程設計與分析
一、情境導入
[課件展示,激趣感知]
博物館、農場到學校與學校到博物館農場的距離的`關系。
[媒體展示課件,認知生活中的有些問題]
不考慮相反意義,只考慮具體數值。
[創(chuàng)設情境,實例導入]利用動畫展示,讓學生在有趣的圖畫中感受絕對值激發(fā)學生的興趣。
實物的形象符合學生心理,學生興趣很高,踴躍發(fā)言,95%的學生能順利的解決問題。
師生互動
[提出問題,引發(fā)討論]
1、引導學生得出絕對值定義及表示方法。
2、同桌之間互相舉例。
[展示:啟發(fā)學生交流了解絕對值]
歸納絕對值概念,教師指出表示方法。
[師生互動、探索新知]:學生根據情境感知初步認知絕對值,并通過對其概念的理解求解一個數的絕對值。
同桌之間舉例,效果良好,體現(xiàn)了“自主——協(xié)作”學習。
閱讀課文,互動探索
求解各數的絕對值后討論
1、想一想互為相反數的兩個數的絕對值有什么關系?學生舉例,并進行觀察、比較、歸納。
2、議一議一個數的絕對值與這個數有什么關系?小組討論、交流教師引導學生用自己的語言描述所得結論教師質疑:一個數的絕對值是否為負數?學生通過分析理解絕對值的內在涵義。
閱讀課文:從各數的絕對值歸納絕對值的代數意義。
[閱讀課文:“想一想]提出問題,引起學生的思考。
[閱讀課文:“議一議]
學生分析各類數的絕對值與本身的關系,并對教師的質疑進行深究。
[趣引妙答,思路點撥]通過學生舉例思考,對互為相反數的兩個數的絕對值進行觀察對比,從而得到它們的關系。
學生從“特殊——一般”分類歸納絕對值的代數意義,并通過歸納總結出絕對值的內在涵義,體現(xiàn)學生的主體性。
積極調動學生的思維,使學生在協(xié)商、討論中將問題逐漸明朗化、具體化,在共享集體思維成果的基礎上達到對當前所學內容比較全面、正確的理解。
3、做一做
[激趣探知]
教師出示過關題目
學生通過自主探索最終找到兩個負數比較大小的方法,絕對值大的反而小。
師生歸納兩頁數比較大小的兩種方法。
[探索用絕對值比較兩負數的方法]
體驗概念的形式過程
舊知識的引用,讓學生在輕松愉快的環(huán)境中獲取新知,從已有知識逐漸到新知識,不但可激發(fā)學生的興趣,并且培養(yǎng)學生的探索精神,同時分解了本節(jié)的難點。
從舊知識層層引入,學生興趣十足,提高了教學效果,突破了難點,學生接受輕而易舉。
鞏固練習
[絕對值比較兩負數大小的運用]
情境:比較下列每組數的大小。
[媒體展示,出示習題]:
運用絕對值比較負數大小。
[變成訓練,鞏固反饋]
繼續(xù)對絕對值比較負數大小進行鞏固練習。
由以上練習層層深入,學生解決問題的能力大大提高,并且印象深刻。
知識延伸
[學生探究,教師點撥]
[媒體展示]
絕對值定義,代數意義及內在涵義的的靈活應用。
[知識延伸,目標升華]
充分發(fā)揮學生的自主探索能力,使學生能夠深入、細致的理解知識點。
學生能夠互相評點,共同探索,既發(fā)展了自主學習能力,又強化了協(xié)作精神。
初一數學下冊教案4
教學目標:
1、經歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。
2、體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質,從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。
3、了解完全平方公式的幾何背景,培養(yǎng)學生的數形結合意識。
4、在學習中使學生體會學習數學的樂趣,培養(yǎng)學習數學的信心,感愛數學的內在美。
教學重點:
1、弄清完全平方公式的來源及其結構特點,用自己的語言說明公式及其特點;
2、會用完全平方公式進行運算。
教學難點:
會用完全平方公式進行運算
教學方法:
探索討論、歸納總結。
教學過程:
一、回顧與思考
活動內容:復習已學過的平方差公式
1、平方差公式:(a+b)(a—b)=a2—b2;
公式的結構特點:左邊是兩個二項式的乘積,即兩數和與這兩數差的積。
右邊是兩數的平方差。
2、應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。
二、情境引入
活動內容:提出問題:
一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。
用不同的形式表示實驗田的總面積,并進行比較。
三、初識完全平方公式
活動內容:
1、通過多項式的`乘法法則來驗證(a+b)2=a2+2ab+b2的正確性。并利用兩數和的完全平方公式推導出兩數差的完全平方公式:(a—b)2=a2—2ab+b2。
2、引導學生利用幾何圖形來驗證兩數差的完全平方公式。
3、分析完全平方公式的結構特點,并用語言來描述完全平方公式。
結構特點:左邊是二項式(兩數和(差))的平方;
右邊是兩數的平方和加上(減去)這兩數乘積的兩倍。
語言描述:兩數和(或差)的平方,等于這兩數的平方和加上(或減去)這兩數積的兩倍。
四、再識完全平方公式
活動內容:例1用完全平方公式計算:
?。?)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2
2、總結口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。
五、鞏固練習:
1、下列各式中哪些可以運用完全平方公式計算。
1、6完全平方公式:
一、學習目標
1、會推導完全平方公式,并能運用公式進行簡單的計算。
2、了解完全平方公式的幾何背景
二、學習重點:會用完全平方公式進行運算。
三、學習難點:理解完全平方公式的結構特征并能靈活應用公式進行計算。
四、學習設計
?。ㄒ唬╊A習準備
?。?)預習書p23—26
(2)思考:和的平方等于平方的和嗎?
1、6《完全平方公式》習題
1、已知實數x、y都大于2,試比較這兩個數的積與這兩個數的和的大小,并說明理由。
2、已知(a+b)2=24,(a—b)2=20,求:
?。?)ab的值是多少?
(2)a2+b2的值是多少?
3、已知2(x+y)=—6,xy=1,求代數式(x+2)—(3xy—y)的值。
《1、6完全平方公式》課時練習
1、(5—x2)2等于;
答案:25—10x2+x4
解析:解答:(5—x2)2=25—10x2+x4
分析:根據完全平方公式與冪的乘方法則可完成此題。
2、(x—2y)2等于;
答案:x2—8xy+4y2
解析:解答:(x—2y)2=x2—8xy+4y2
分析:根據完全平方公式與積的乘方法則可完成此題。
3、(3a—4b)2等于;
答案:9a2—24ab+16b2
解析:解答:(3a—4b)2=9a2—24ab+16b2
分析:根據完全平方公式可完成此題。
初一數學下冊教案5
學習目標:
1.理解平行線的意義兩條直線的兩種位置關系;
2.理解并掌握平行公理及其推論的內容;
3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;
學習重點:
探索和掌握平行公理及其推論.
學習難點:
對平行線本質屬性的理解,用幾何語言描述圖形的`性質
一、學習過程:預習提問
兩條直線相交有幾個交點?
平面內兩條直線的位置關系除相交外,還有哪些呢?
?。ㄒ唬┊嬈叫芯€
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"畫"。
3、請你根據此方法練習畫平行線:
已知:直線a,點B,點C.
(1)過點B畫直線a的平行線,能畫幾條?
(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?
?。ǘ┢叫泄砑巴普?/p>
1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;
②過點C畫直線a的平行線,能畫 條;
?、勰惝嫷闹本€有什么位置關系? 。
?、谔剿鳎喝鐖D,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?
二、自我檢測:
?。ㄒ唬┻x擇題:
1、下列推理正確的是 ( )
A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d
C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c
2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )
A.0個 B.1個 C.2個 D.3個
?。ǘ┨羁疹}:
1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。
2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:
?。?)L1與L2 沒有公共點,則 L1與L2 ;
(2)L1與L2有且只有一個公共點,則L1與L2 ;
(3)L1與L2有兩個公共點,則L1與L2 。
3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。
4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。
三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.
初一數學下冊教案6
教學目標
1、通過實際操作,了解什么叫做軸對稱變換。
2、如何作出一個圖形關于一條直線的軸對稱圖形。
教學重點
1、軸對稱變換的定義。
2、能夠按要求作出簡單平面圖形經過軸對稱后的圖形。
教學難點
1、作出簡單平面圖形關于直線的軸對稱圖形。
2、利用軸對稱進行一些圖案設計。
教學過程
Ⅰ、設置情境,引入新課
在前一個章節(jié),我們學習了軸對稱圖形以及軸對稱圖形的一些相關的性質問題。在上節(jié)課的作業(yè)中,我們有個要求,讓同學們自己思考一種作軸對稱圖形的方法,現(xiàn)在來看一下同學們完成的怎么樣。
將一張紙對折后,用針尖在紙上扎出一個圖案,將紙打開后鋪平,得到的兩個圖案是關于折痕成軸對稱的圖形。
準備一張質地較軟,吸水性能好的紙或報紙,在紙的一側上滴上一滴墨水,將紙迅速對折,壓平,并且手指壓出清晰的折痕。再將紙打開后鋪平,位于折痕兩側的墨跡圖案也是對稱的
這節(jié)課我們就是來作簡單平面圖形經過軸對稱后的圖形。
Ⅱ、導入新課
由我們已經學過的知識知道,連結任意一對對應點的線段被對稱軸垂直平分。
類似地,我們也可以由一個圖形得到與它成軸對稱的另一個圖形,重復這個過程,可以得到美麗的圖案。
對稱軸方向和位置發(fā)生變化時,得到的圖形的方向和位置也會發(fā)生變化。大家看大屏幕,從電腦演示的圖案變化中找出對稱軸的方向和位置,體會對稱軸方
向和位置的變化在圖案設計中的奇妙用途。
下面,同學們自己動手在一張紙上畫一個圖形,將這張紙折疊描圖,再打開看看,得到了什么?改變折痕的位置并重復幾次,又得到了什么?同學們互相交流一下。
結論:由一個平面圖形呆以得到它關于一條直線L對稱的圖形,這個圖形與原圖形的形狀、大小完全相同;新圖形上的每一點,都是原圖形上的某一點關于直線L的對稱點;
連結任意一對對應點的線段被對稱軸垂直平分。
我們把上面由一個平面圖形得到它的軸對稱圖形叫做軸對稱變換。
成軸對稱的兩個圖形中的任何一個可以看作由另一個圖形經過軸對稱變換后得到。一個軸對稱圖形也可以看作以它的一部分為基礎,經軸對稱變換擴展而成的
取一張長30厘米,寬6厘米的紙條,將它每3厘米一段,一正一反像“手風琴”那樣折疊起來,并在折疊好的.紙上畫上字母E,用小刀把畫出的字母E挖去,拉開“手風琴”,你就可以得到以字母E為圖案的花邊?;卮鹣铝袉栴}。
?。?)在你所得的花邊中,相鄰兩個圖案有什么關系?相間的兩個圖案又有什么關系?說說你的理由。
(2)如果以相鄰兩個圖案為一組,每一組圖案之間有什么關系?三個圖案為一組呢?為什么?
?。?)在上面的活動中,如果先將紙條縱向對折,再折成“手風琴”,然后繼續(xù)上面的步驟,此時會得到怎樣的花邊?它是軸對稱圖形嗎?先猜一猜,再做一做。
注:為了保證剪開后的紙條保持連結,畫出的圖案應與折疊線稍遠一些。
?、蟆㈦S堂練習
?。ㄒ唬┤鐖D(1),將一張正六邊形紙沿虛線對折折3次,得到一個多層的60°角形紙,用剪刀在折疊好的紙上隨意剪出一條線,如圖(2)。
?。?)猜一猜,將紙打開后,你會得到怎樣的圖形?
?。?)這個圖形有幾條對稱軸?
?。?)如果想得到一個含有5條對稱軸的圖形,你應取什么形狀的紙?應如何折疊?
答案:(1)軸對稱圖形。
?。?)這個圖形至少有3條對稱軸。
?。?)取一個正十邊形的紙,沿它通過中心的五條對角線折疊五次,得到一個多層的36°角形紙,用剪刀在疊好的紙上任意剪出一條線,打開即可得到一個至少含有5條對稱軸的軸對稱圖形。
?。ǘ┗仡櫛竟?jié)課內容,然后小結。
?、簟⒄n時小結
本節(jié)課我們主要學習了如何通過軸對稱變換來作出一個圖形的軸對稱圖形,并且利用軸對稱變換來設計一些美麗的圖案。在利用軸對稱變換設計圖案時,要注意運用對稱軸位置和方向的變化,使我們設計出更新疑獨特的美麗圖案。
初一數學下冊教案6篇相關文章:
★ 圓數學教案12篇