下面是范文網(wǎng)小編收集的一次函數(shù)教案8篇,供大家參考。

一次函數(shù)教案1
一、讀一讀
學習目標:
1、掌握“三角形內(nèi)角和定理”的證明及其簡單應用;
2、體會思維實驗和符號化的理性作用
二、試一試
自學指導:
1、回憶三角形內(nèi)角和的`探索方式,想一想,根據(jù)前面給出的公里 和定理,你能進行論證么?
2、已知:如右圖所示,△ABC
求證:∠A+∠B+∠C=180°
思考:延長BC到D,過點C作射線CE∥BA,這樣就相
當于把∠A移到了 的位置,把∠B移到 的位置。
注意:這里的CD,CE稱為輔助線,輔助線通常畫成虛線
證明:作BC的延長線CD,過點C作射線CE∥BA,則:
3、你還有其它方式么(可參考課本239頁“議一議”小明的想法;241頁聯(lián)系拓廣4)?方法越多越好!
三、練一練
1、直角三角形的兩銳角之和是多少度?正三角形的一個內(nèi)角是多少度?請證明你的結(jié)論。
2、已知:如圖,在△ABC中,∠A=60°,∠C=70°,點D和點E分別在AB和AC上,且DE∥BC
求證:∠ADE=50°
3、如圖,在△ABC中,DE∥BC,∠DBE=30°, ∠EBC=25°,求∠BDE的大小。
4、證明:四邊形的內(nèi)角和等于360°
一次函數(shù)教案2
學習目標(學習重點):
1. 針對函數(shù)及其圖象一章,查漏補缺,答疑解惑;
2. 一次函數(shù)應用的復習.
補充例題:
例1.如圖,lA lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系
(1)B出發(fā)時與A相距 千米;
(2)走了一段路后,自行車發(fā)生故障,進行修理,所用的時間是 小時;
(3)B出發(fā)后 小時與A相遇;
(4)求出A行走的路程S與時間t的函數(shù)關(guān)系式;
(5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進, 小時與A相遇,相遇點離B的出發(fā)點 千米,在圖中表示出這個相遇點C.
例2.在平面直角坐標系中,過一點分別作坐標軸的垂線,若與坐標軸圍成矩形的周長與面積相等,則這個點叫做和諧點.例如,圖中過點P分別作x軸, y的垂線,與坐標軸圍成矩形OAPB的周長與面積相等,則點P是和諧點.
(1)判斷點M(1,2),N(4,4)是否為和諧點,并說明理由;
(2)若和諧點P(a,3)在直線y=-x+b(b為常數(shù))上,求點a, b的值.
例3.在平面直角坐標系中,一動點P(x,y)從M(1,0)出發(fā),沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四點組成的正方形邊線(如圖①)按一定方向運動.圖②是P點運動的路程s(個單位)與運動時間 (秒)之間的函數(shù)圖象,圖③是P點的縱坐標y與P點運動的路程s之間的函數(shù)圖象的一部分.
(1)求s與t之間的函數(shù)關(guān)系式.
(2)與圖③相對應的P點的運動路徑是: ;P點出發(fā) 秒首次到達點B;
(3)寫出當38時,y與s之間的函數(shù)關(guān)系式,并在圖③中補全函數(shù)圖象.
課后續(xù)助:
1.某市自來水公司為限制單位用水,每月只給某單位計劃內(nèi)用水3000噸,計劃內(nèi)用水每噸收費0.5元,超計劃部分每噸按0.8元收費.
(1)寫出該單位水費y(元)與每月用水量x(噸)之間的`函數(shù)關(guān)系式
①用水量小于等于3000噸 ;②用水量大于3000噸 .
(2)某月該單位用水3200噸,水費是 元;若用水2800噸,水費 元.
(3)若某月該單位繳納水費1540元,則該單位用水多少噸?
2.某通訊公司推出①、②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x(分鐘)與收費y(元)之間的函數(shù)關(guān)系如圖所示.
(1)有月租費的收費方式是 (填①或②),月租費是 元;
(2)分別求出①、②兩種收費方式中y與自變量x之間的函數(shù)關(guān)系式;
(3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.
3.某氣象研究中心觀測一場沙塵暴從發(fā)生到結(jié)束全過程, 開始時風暴平均每小時增加2千米/時,4小時后,沙塵暴經(jīng)過開闊荒漠地,風速變?yōu)槠骄啃r增加4千米/時,一段時間,風暴保持不變,當沙塵暴遇到綠色植被區(qū)時,其風速平均每小時減小1千米/時,最終停止。 結(jié)合風速與時間的圖像,回答下列問題:
(1)在y軸( )內(nèi)填入相應的數(shù)值;
(2)沙塵暴從發(fā)生到結(jié)束,共經(jīng)過多少小時?
(3)求出當x25時,風速y(千米/時)與時間x(小時)之間的函數(shù)關(guān)系式.
(4)若風速達到或超過20千米/時,稱為強沙塵暴,則強沙塵暴持續(xù)多長時間?
4.如圖所示,大拇指與小拇指盡量張開時,兩指尖的距離稱為指距.某項研究表明,一般情況下人的身高h是指距d的一次函數(shù),下表是測得的指距與身高的一組數(shù)據(jù).
指距d/cm 20 21 22 23
身高h/cm 160 169 178 187
(1)求出h與d之間的函數(shù)關(guān)系式;(不要求寫出自變量d的取值范圍)
(2)某人身高為196cm,一般情況下他的指距應是多少?
5.小李師傅駕車到某地辦事,汽車出發(fā)前油箱中有油50升,行駛?cè)舾尚r后,途中在加油站加油若干升,油箱中剩余油量y(升)與行駛時間t(小時)之間的關(guān)系如圖所示.
(1)請問汽車行駛多少小時后加油,中途加油多少升?
(2)求加油前油箱剩余油量y與行駛時間t的函數(shù)關(guān)系式;
(3)已知加油前后汽車都以70千米/小時的速度勻速行駛,如果加油站距目的地210千米,要到達目的地,問油箱中的油是否夠用?請說明理由.
一次函數(shù)教案3
一、教材分析
1、地位和作用
這一節(jié)內(nèi)容是初中數(shù)學新教材八年級上冊第十四章第三節(jié)的內(nèi)容。它是在學生學習了前面一節(jié)一次函數(shù)后,回過頭重新認識已經(jīng)學習過的一些其他數(shù)學概念,即通過討論一次函數(shù)與一元一次不等式的關(guān)系,從運動變化的角度,用函數(shù)的觀點加深對已經(jīng)學習過的不等式的認識,構(gòu)建和發(fā)展相互聯(lián)系的知識體系。它不是簡單的回顧復習,而是居高臨下的進行動態(tài)分析。
2、活動目標
?、倮斫庖淮魏瘮?shù)與一元一次不等式的關(guān)系。會根據(jù)一次函數(shù)圖像解決一元一次不等式解決問題。
?、趯W習用函數(shù)的觀點看待不等式的方法,初步形成用全面的觀點處理局部問題。
?、劢?jīng)歷不等式與函數(shù)問題的探討過程,學習用聯(lián)系的觀點看待數(shù)學問題的辨證思想。
?、茉鰪妼W生學數(shù)學,用數(shù)學,探索數(shù)學奧妙的愿望,體驗成功的感覺,品嘗成功的喜悅。
總的來講,希望達到張孝達對我們教育工作者的要求:給我們所有的.學生,一雙能用數(shù)學視角觀察世界的眼睛,一個能用數(shù)學思維思考世界的大腦。
3、教學重點
?。ǎ保斫庖辉淮尾坏仁脚c一次函數(shù)的轉(zhuǎn)化關(guān)系及本質(zhì)聯(lián)系
(2).掌握用圖象求解不等式的方法.
教學難點:圖象法求解不等式中自變量取值范圍的確定.
二、學情分析
八年級學生的思維已逐步從直觀的形象思維為主向抽象的邏輯思維過渡,而且具備一定的信息收集的能力。
三、學法分析
1、學生自主探索,思考問題,獲取知識,掌握方法,真正成為學習的主體。
2、學生在小組合作學習中體驗學習的快樂。合作交流的友好氛圍,讓學生更有機會體驗自己與他人的想法,從而掌握知識,發(fā)展技能,獲得愉快的心理體驗。
四、教法分析
由于任何一個一元一次不等式都能寫成ax+b>0(或<0)的形式,而此式的左邊與一次函數(shù)y=ax+b的右邊一致,所以從變化與對應的觀點考慮問題,解一元一次不等式也可以歸結(jié)為兩種認識:
?、艔暮瘮?shù)值的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于0)的自變量x的取值范圍。
⑵從函數(shù)圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點的橫坐標所構(gòu)成的集合。
教學過程中,主要從以上兩個角度探討一元一次不等式與一次函數(shù)的關(guān)系。
1、“動”———學生動口說,動腦想,動手做,親身經(jīng)歷知識發(fā)生發(fā)展的過程。
2、“探”———引導學生動手畫圖,合作討論。通過探究學習激發(fā)強烈的探索欲望。
3、“樂”———本節(jié)課的設(shè)計力求做到與學生的生活實際聯(lián)系緊一點,直觀多一點,動手多一點,使學生興趣高一點,自信心強一點,使學生樂于學習,樂于思考。
4、“滲”———在整個教學過程中,滲透用聯(lián)系的觀點看待數(shù)學問題的辨證思想。
一次函數(shù)教案4
一、目的要求
1、使學生初步理解一次函數(shù)與正比例函數(shù)的概念。
2、使學生能夠根據(jù)實際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。
二、內(nèi)容分析
1、初中主要是通過幾種簡單的函數(shù)的初步介紹來學習函數(shù)的,前面三小節(jié),先學習函數(shù)的概念與表示法,這是為學習后面的幾種具體的函數(shù)作準備的,從本節(jié)開始,將依次學習一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關(guān)知識,大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質(zhì)這個順序講述的,通過這些具體函數(shù)的學習,學生可以加深對函數(shù)意義、函數(shù)表示法的認識,并且,結(jié)合這些內(nèi)容,學生還會逐步熟悉函數(shù)的知識及有關(guān)的數(shù)學思想方法在解決實際問題中的應用。
2、舊教材在講幾個具體的函數(shù)時,是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當照顧了學生在小學數(shù)學中學了正反比例關(guān)系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學習反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質(zhì)都是比較簡單的,相對來說,反比例函數(shù)就要復雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學習反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學習效益,又便于學生了解正比例函數(shù)與一次函數(shù)的關(guān)系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質(zhì)。
3、“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學生初次接觸函數(shù)的有關(guān)內(nèi)容時,一定要結(jié)合具體函數(shù)進行學習,因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學習,學生可以對函數(shù)的研究方法有一個初步的認識與了解,從而能更好地把握學習二次函數(shù)、反比例函數(shù)的學習方法。
三、教學過程
復習提問:
1、什么是函數(shù)?
2、函數(shù)有哪幾種表示方法?
3、舉出幾個函數(shù)的例子。
新課講解:
可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數(shù)的例子。然后讓學生觀察這些例子(實際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:
(1)這些式子表示的是什么關(guān)系?(在學生明確這些式子表示函數(shù)關(guān)系后,可指出,這是函數(shù)。)
(2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數(shù),等號右邊是一個代數(shù)式,其中的字母x與t是自變量。)
(3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關(guān)于自變量的什么式呢?(這題牽扯到有關(guān)整式的.基本概念,表示函數(shù)的自變量的式子也就是等號右邊的式子,都是關(guān)于自變量的一次式。)
(4)x的一次式的一般形式是什么?(結(jié)合一元一次方程的有關(guān)知識,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的層層設(shè)問,最后給出一次函數(shù)的定義。
一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。
對這個定義,要注意:
(1)x是變量,k,b是常數(shù);
(2)k≠0 (當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點,不一定向?qū)W生講述。)
由一次函數(shù)出發(fā),當常數(shù)b=0時,一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。
在講述正比例函數(shù)時,首先,要注意適當復習小學學過的正比例關(guān)系,小學數(shù)學是這樣陳述的:
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。
寫成式子是(一定)
需指出,小學因為沒有學過負數(shù),實際的例子都是k>0的例子,對于正比例函數(shù),k也為負數(shù)。
其次,要注意引導學生找出一次函數(shù)與正比例函數(shù)之間的關(guān)系:正比例函數(shù)是特殊的一次函數(shù)。
課堂練習:
教科書13、4節(jié)練習第1題.
一次函數(shù)教案5
教學目標:
1、掌握一次函數(shù)解析式的特點及意義
2、知道一次函數(shù)與正比例函數(shù)的關(guān)系
3、理解一次函數(shù)圖象特點與解析式的聯(lián)系規(guī)律
教學重點:
1、 一次函數(shù)解析式特點
2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律
教學難點:
1、一次函數(shù)與正比例函數(shù)關(guān)系
2、根據(jù)已知信息寫出一次函數(shù)的表達式。
教學過程:
Ⅰ.提出問題,創(chuàng)設(shè)情境
問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時.已知A地直達北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時間有什么關(guān)系,以便根據(jù)時間估計自己和北京的距離.
分析 我們知道汽車距北京的路程隨著行車時間而變化,要想找出這兩個變化著的量的關(guān)系,并據(jù)此得出相應的值,顯然,應該探求這兩個變量的變化規(guī)律.為此,我們設(shè)汽車在高速公路上行駛時間為t小時,汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是
s=570-95t.
說明 找出問題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個變量,s是t的函數(shù),t是自變量,s是因變量.
問題2 小張準備將平時的零用錢節(jié)約一些儲存起來.他已存有50元,從現(xiàn)在起每個月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開始的.月份之間的函數(shù)關(guān)系式.
分析 我們設(shè)從現(xiàn)在開始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.
問題3 以上問題1和問題2表示的這兩個函數(shù)有什么共同點?
?、颍畬胄抡n
上面的兩個函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當b=0時,稱
y是x的正比例函數(shù)。
例1:下列函數(shù)中,y是x的一次函數(shù)的是( )
①y=x-6;②y=2x;③y=;④y=7-x x8
A、①②③B、①③④ C、①②③④ D、②③④
例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?
(1)面積為10cm2的三角形的底a(cm)與這邊上的高h(cm);
(2)長為8(cm)的平行四邊形的周長L(cm)與寬b(cm);
(3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;
(4)汽車每小時行40千米,行駛的路程s(千米)和時間t(小時).
?。?)汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間x(時)之間的關(guān)系式;
?。?)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;
(7)一棵樹現(xiàn)在高50厘米,每個月長高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h
(2)L=2b+16,L是b的一次函數(shù).
(3)y=150-5x,y是x的一次函數(shù).
(4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).
?。?)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);
?。?)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);
?。?)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)
例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.
分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.
解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?
若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.
例4 已知y與x-3成正比例,當x=4時,y=3.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)y與x之間是什么函數(shù)關(guān)系;
(3)求x=2.5時,y的值.
解 (1)因為 y與x-3成正比例,所以y=k(x-3).
又因為x=4時,y=3,所以3= k(4-3),解得k=3,
所以y=3(x-3)=3x-9.
(2) y是x的一次函數(shù).
(3)當x=2.5時,y=3×2.5=7.5.
1. 2
例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時12千米的速度從A地出發(fā),經(jīng)過B地到達C地.設(shè)此人騎行時間為x(時),離B地距離為y(千米).
(1)當此人在A、B兩地之間時,求y與x的函數(shù)關(guān)系及自變量x取值范圍.
(2)當此人在B、C兩地之間時,求y與x的函數(shù)關(guān)系及自變量x的取值范圍.
分析 (1)當此人在A、B兩地之間時,離B地距離y為A、B兩地的距離與某人所走的路程的差.
(2)當此人在B、C兩地之間時,離B地距離y為某人所走的路程與A、B兩地的距離的差.
解 (1) y=30-12x.(0≤x≤2.5)
(2) y=12x-30.(2.5≤x≤6.5)
例6 某油庫有一沒儲油的儲油罐,在開始的8分鐘時間內(nèi),只開進油管,不開出油管,油罐的進油至24噸后,將進油管和出油管同時打開16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進油管,只開出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時間內(nèi)進油管與出油管的流量分別保持不變.寫出這段時間內(nèi)油罐的儲油量y(噸)與進出油時間x(分)的函數(shù)式及相應的x取值范圍.
分析 因為在只打開進油管的8分鐘內(nèi)、后又打開進油管和出油管的16分鐘和最后的只開出油管的三個階級中,儲油罐的儲油量與進出油時間的函數(shù)關(guān)系式是不同的,所以此題因分三個時間段來考慮.但在這三個階段中,兩變量之間均為一次函數(shù)關(guān)系.
解 在第一階段:y=3x(0≤x≤8);
在第二階段:y=16+x(8≤x≤16);
在第三階段:y=-2x+88(24≤x≤44).
?、螅S堂練習
根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?
2、為了加強公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費標準如下:每戶每月用水量不超過6米3時,水費按0.6元/米3收費;每戶每月用水量超過6米3時,超過部分按1元/米3收費。設(shè)每戶每月用水量為x米3,應繳水費y元。(1)寫出每月用水量不
超過6米3和超過6米3時,y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]
Ⅳ.課時小結(jié)
1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。
2、能根據(jù)已知簡單信息,寫出一次函數(shù)的表達式。
?、酰n后作業(yè)
1、已知y-3與x成正比例,且x=2時,y=7
(1)寫出y與x之間的函數(shù)關(guān)系.
(2)y與x之間是什么函數(shù)關(guān)系.
(3)計算y=-4時x的值.
2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計算5千克重的包裹的郵資.
3.倉庫內(nèi)原有粉筆400盒.如果每個星期領(lǐng)出36盒,求倉庫內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.
4.今年植樹節(jié),同學們種的樹苗高約1.80米.據(jù)介紹,這種樹苗在10年內(nèi)平均每年長高0.35米.求樹高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學們中學畢業(yè)時這些樹約有多高.
5.按照我國稅法規(guī)定:個人月收入不超過800元,免交個人所得稅.超過800元不超過1300元部分需繳納5%的個人所得稅.試寫出月收入在800元到1300元之間的人應繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.
一次函數(shù)教案6
一、學生起點分析
八年級學生已在七年級學習了“變量之間的關(guān)系”,對利用圖象表示變量之間的關(guān)系已有所認識,并能從圖象中獲取相關(guān)的信息,對函數(shù)與圖象的聯(lián)系還比較陌生,需要教師在教學中引導學生重點突破函數(shù)與圖象的對應關(guān)系.
二、教學任務分析
《一次函數(shù)的圖象》是義務教育課程標準北師大實驗教科書八年級(上)第六章《一次函數(shù)》的第三節(jié).本節(jié)內(nèi)容安排了2個課時,第1課時是讓學生了解函數(shù)與對象的對應關(guān)系和作函數(shù)圖象的步驟和方法,明確一次函數(shù)的圖象是一條直線,能熟練地作出一次函數(shù)的圖象。第2課時是通過對一次函數(shù)圖象的比較與歸類,探索一次函數(shù)及其圖象的簡單性質(zhì).本課時是第一課時,教材注重學生在探索過程的體驗,注重對函數(shù)與圖象對應關(guān)系的認識.
為此本節(jié)課的教學目標是:
1.了解一次函數(shù)的圖象是一條直線,能熟練作出一次函數(shù)的圖象.
2.經(jīng)歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.
3.已知函數(shù)的代數(shù)表達式作函數(shù)的圖象,培養(yǎng)學生數(shù)形結(jié)合的意識和能力.
4.理解一次函數(shù)的代數(shù)表達式與圖象之間的一一對應關(guān)系.
教學重點是:
初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.
教學難點是:
理解一次函數(shù)的代數(shù)表達式與圖象之間的一一對應關(guān)系.
三、教學過程設(shè)計
本節(jié)課設(shè)計了七個教學環(huán)節(jié):
第一環(huán)節(jié):創(chuàng)設(shè)情境引入課題;
第二環(huán)節(jié):畫一次函數(shù)的圖象;
第三環(huán)節(jié):動手操作,深化探索;
第四環(huán)節(jié):鞏固練習,深化理解;
第五環(huán)節(jié):課時小結(jié);
第六環(huán)節(jié):拓展探究;
第七環(huán)節(jié):作業(yè)布置.
第一環(huán)節(jié):創(chuàng)設(shè)情境引入課題
內(nèi)容:
一天,小明以80米/分的速度去上學,請問小明離家的距離S(米)與小明出發(fā)的時間t(分)之間的函數(shù)關(guān)系式是怎樣的?它是一次函數(shù)嗎?它是正比例函數(shù)嗎? S=80t(t≥0)下面的圖象能表示上面問題中的S與t的關(guān)系嗎?
我們說,上面的圖象是函數(shù)S=80t(t≥0)的圖象,這就是我們今天要學習的主要內(nèi)容:一次函數(shù)的圖象的特殊情況正比例函數(shù)的圖象。
目的:通過學生比較熟悉的生活情景,讓學生在寫函數(shù)關(guān)系式和認識圖象的過程中,初步感受函數(shù)與圖象的聯(lián)系,激發(fā)其學習的欲望.
效果:學生通過對上述情景的分析,初步感受到函數(shù)與圖象的聯(lián)系,激發(fā)了學生的學習欲望.
第二環(huán)節(jié):畫正比例函數(shù)的圖象
內(nèi)容:首先我們來學習什么是函數(shù)的圖象?
把一個函數(shù)的自變量x與對應的因變量y的值分別作為點的橫坐標和縱坐標,在直角坐標系內(nèi)描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖象(graph).
例1請作出正比例函數(shù)y=2x的圖象.
第三環(huán)節(jié):動手操作,深化探索
內(nèi)容:做一做
(1)作出正比例函數(shù)y= 3x的圖象.
(2)在所作的圖象上取幾個點,找出它們的橫坐標和縱坐標,并驗證它們是否都滿足關(guān)系y= 3x.
請同學們以小組為單位,討論下面的'問題,把得出的結(jié)論寫出來.
(1)滿足關(guān)系式y(tǒng)= 3x的x,y所對應的點(x,y)都在正比例函數(shù)y= 3x的圖象上嗎?
(2)正比例函數(shù)y= 3x的圖象上的點(x,y)都滿足關(guān)系式y(tǒng)= 3x嗎?
(3)正比例函數(shù)y=kx的圖象有什么特點?
明晰
由上面的討論我們知道:正比例函數(shù)的代數(shù)表達式與圖象是一一對應的,即滿足正比例函數(shù)的代數(shù)表達式的x,y所對應的點(x,y)都在正比例函數(shù)的圖象上;正比例函數(shù)的圖象上的點(x,y)都滿足正比例函數(shù)的代數(shù)表達式.正比例函數(shù)y=kx的圖象是一條直線,以后可以稱正比例函數(shù)y=kx的圖象為直線y=kx.
議一議
既然我們得出正比例函數(shù)y=kx的圖象是一條直線.那么在畫正比例函數(shù)圖象時有沒有什么簡單的方法呢?
因為“兩點確定一條直線”,所以畫正比例函數(shù)y=kx的圖象時可以只描出兩個點就可以了.因為正比例函數(shù)的圖象是一條過原點(0,0)的直線,所以只需再確定一個點就可以了,通常過(0,0),(1,k)作直線.
4.3一次函數(shù)的圖象:同步測試
14若直線經(jīng)過第一.二.四象限,則k.b的取值范圍是( ).
A.k>0,b>0 B.k>0,b<0
C.k<0,b>0 D. k<0,b<0
2.已知一次函數(shù)y=3-2x
(1)求圖像與兩條坐標軸的交點坐標,并在下面的直角坐標系中畫出它的圖像;
(2)從圖像看,y隨著x的增大而增大,還是隨x的增大而減小?
(3)x取何值時,y>0?
3.已知一次函數(shù)y=-2x+4
(1)畫出函數(shù)的圖象.
(2)求圖象與x軸、y軸的交點A、B的坐標.
(3)求A、B兩點間的距離.
(4)求△AOB的面積.
(5)利用圖象求當x為何值時,y≥0.
《函數(shù)的圖象》課后練習
1.一根彈簧原長12cm,它所掛物體的質(zhì)量不超過10kg,并且每掛重物1kg就伸長1.5cm,掛重物后彈簧長度y(cm)與掛重物x(kg)之間的函數(shù)關(guān)系式是()
A.y=1.5(x+12)(0≤x≤10)
B.y= 1.5x+12(0≤x≤10)
C.y=1.5x+10(x≥0)
D.y=1.5(x-12)(0≤x≤10)
一次函數(shù)教案7
一、創(chuàng)設(shè)情境
問題畫出函數(shù)y=的圖象,根據(jù)圖象,指出:
(1)x取什么值時,函數(shù)值y等于零?
(2)x取什么值時,函數(shù)值y始終大于零?
二、探究歸納
問一元一次方程=0的解與函數(shù)y=的圖象有什么關(guān)系?
答一元一次方程=0的解就是函數(shù)y=的圖象上當y=0時的x的值.
問一元一次方程=0的解,不等式>0的解集與函數(shù)y=的`圖象有什么關(guān)系?
答不等式>0的解集就是直線y=在x軸上方部分的x的取值范圍.
三、實踐應用
例1畫出函數(shù)y=-x-2的圖象,根據(jù)圖象,指出:
(1)x取什么值時,函數(shù)值y等于零?
(2)x取什么值時,函數(shù)值y始終大于零?
解過(-2,0),(0,-2)作直線,如圖.
(1)當x=-2時,y=0;
(2)當x<-2時,y>0.
例2利用圖象解不等式(1)2x-5>-x+1,(2)2x-5<-x+1.
解設(shè)y1=2x-5,y2=-x+1,
在直角坐標系中畫出這兩條直線,如下圖所示.
兩條直線的交點坐標是(2,-1),由圖可知:
(1)2x-5>-x+1的解集是y1>y2時x的取值范圍,為x>-2;
(2)2x-5<-x+1的解集是y1<y2時x的取值范圍,為x<-2.
四、交流反思
運用函數(shù)的圖象來解釋一元一次方程、一元一次不等式的解集,并能通過函數(shù)圖象來回答一元一次方程、一元一次不等式的解集.
五、檢測反饋
1.已知函數(shù)y=4x-3.當x取何值時,函數(shù)的圖象在第四象限?
2.畫出函數(shù)y=3x-6的圖象,根據(jù)圖象,指出:
(1)x取什么值時,函數(shù)值y等于零?
(2)x取什么值時,函數(shù)值y大于零?
(3)x取什么值時,函數(shù)值y小于零?
3.畫出函數(shù)y=-0.5x-1的圖象,根據(jù)圖象?
一次函數(shù)教案8
教材分析
在函數(shù)教學中,我們不僅要在教會函數(shù)知識上下功夫,而且還應該追求解決問題的“常規(guī)方法”——基本函數(shù)知識中所蘊含的思想方法,要從數(shù)學思想方法的高度進行函數(shù)教學。 在函數(shù)的教學中,應突出“類比”的思想和“數(shù)形結(jié)合”的思想。
1 .注重“類比教學” 在函數(shù)教學中我們期望的是通過對前面知識的學習方法的傳授,達到對后續(xù)知識的學習產(chǎn)生影響,使學生達到舉一反三,觸類旁通的目的,讓學生順利地由 “ 學會 ” 到 “ 會學 ” ,真正實現(xiàn) “ 教是為了不教 ” 的目的.
2. 注重“數(shù)學結(jié)合”的教學
數(shù)形結(jié)合的思想方法是初中數(shù)學中一種重要的思想方法。數(shù)學是研究現(xiàn)實世界數(shù)量關(guān)系和空間形式的科學。而數(shù)形結(jié)合就是通過數(shù)與形之間的對應和轉(zhuǎn)化來解決數(shù)學問題。它包含以形助數(shù)和以數(shù)解形兩個方面,利用它可使復雜問題簡單化,抽象問題具體化,它兼有數(shù)的嚴謹與形的直觀之長。
?。?1 )讓學生經(jīng)歷繪制函數(shù)圖象的具體過程。
?。?2 )切莫急于呈現(xiàn)畫函數(shù)圖象的簡單畫法。
?。?3 )注意讓學生體會研究具體函數(shù)圖象規(guī)律的方法。
知識技能
目標
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;
2、會選擇兩個合適的點畫出一次函數(shù)的圖象;
3、掌握一次函數(shù)的性質(zhì).
過程與方法目標
1、通過研究圖象,經(jīng)歷知識的歸納、探究過程;培養(yǎng)學生觀察、比較、概括、推理的能力;
2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度目標
1、通過畫函數(shù)圖象并借助圖象研究函數(shù)的性質(zhì),體驗數(shù)與形的內(nèi)在聯(lián)系,感受函數(shù)圖象的.簡潔美;
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
教學重點
一次函數(shù)的圖象和性質(zhì)。
教學難點
由一次函數(shù)的圖像歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
一次函數(shù)教案8篇相關(guān)文章:
★ 高一數(shù)學對數(shù)函數(shù)教案3篇 人教版高中數(shù)學對數(shù)函數(shù)教案
★ 高一數(shù)學對數(shù)函數(shù)教案3篇 高一上學期數(shù)學對數(shù)函數(shù)
★ 高一數(shù)學教案函數(shù)9篇(數(shù)學函數(shù)講解初二)
★ 高一數(shù)學對數(shù)函數(shù)教案5篇 高中數(shù)學必修一對數(shù)函數(shù)教案
★ 一次函數(shù)的應用教學反思4篇 一次函數(shù)應用題教學反思
★ 一次函數(shù)的應用教學反思4篇(一次函數(shù)的實際應用教學反思)
★ 高三數(shù)學三角函數(shù)復習教案3篇 高三數(shù)學三角函數(shù)知識點歸納
★ 高一數(shù)學對數(shù)函數(shù)教案5篇(高一數(shù)學對數(shù)函數(shù)教案內(nèi)容)