下面是范文網(wǎng)小編整理的最新九年級數(shù)學(xué)上教案例文3篇 九年級數(shù)學(xué)教學(xué)設(shè)計案例,以供借鑒。

最新九年級數(shù)學(xué)上教案例文1
教學(xué)目標
1、在把實際問題轉(zhuǎn)化為一元二次方程的模型的過程中,形成對一元二次方程的感性認識。
2、理解一元二次方程的定義,能識別一元二次方程。
3、知道一元二次方程的一般形式,能熟練地把一元二次方程整理成一般形式,能寫出一般形式的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
重點難點
重點:能建立一元二次方程模型,把一元二次方程整理成一般形式。
難點:把實際問題轉(zhuǎn)化為一元二次方程的模型。
教學(xué)過程
(一)創(chuàng)設(shè)情境
前面我們曾把實際問題轉(zhuǎn)化成一元一次方程和二元一次方程組的模型,大家已經(jīng)感受到了方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的工具。本節(jié)課我們將繼續(xù)進行建立方程模型的探究。
1、展示課本P.2問題一
引導(dǎo)學(xué)生設(shè)人行道寬度為xm,表示草坪邊長為35-2xm,找等量關(guān)系,列出方程。
(35-2x)2=900①
2、展示課本P.2問題二
引導(dǎo)思考:小明與小亮第一次相遇以后要再次相遇,他們走的路程有何關(guān)系?怎樣用他們再次相遇的時間表示他們各自行駛的路程?
通過思考上述問題,引導(dǎo)學(xué)生設(shè)經(jīng)過ts小明與小亮相遇,用s表示他們各自行駛的路程,利用路程方面的等量關(guān)系列出方程
2t+×0.01t2=3t②
3、能把①,②化成右邊為0,而左邊是只含有一個未知數(shù)的二次多項式的形式嗎?讓學(xué)生展開討論,并引導(dǎo)學(xué)生把①,②化成下列形式:
4x2-140x+32③
0.01t2-2t=0④
(二)探究新知
1、觀察上述方程③和④,啟發(fā)學(xué)生歸納得出:
如果一個方程通過移項可以使右邊為0,而左邊是只含有一個未知數(shù)的二次多項式,那么這樣的方程叫作一元二次方程,它的一般形式是:
ax2+bx+c=0,(a,b,c是已知數(shù)且a≠0),
其中a,b,c分別叫作二次項系數(shù)、一次項系數(shù)、常數(shù)項。
2、讓學(xué)生指出方程③,④中的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
(三)講解例題
例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
[解]去括號,得3x2+5x-12=x2+4x+4,
化簡,得2x2+x-16=0。
二次項系數(shù)是2,一次項系數(shù)是1,常數(shù)項是-16。
點評:一元二次方程的一般形式ax2+bx+c=0(a≠0)具有兩個特征:一是方程的右邊為0,二是左邊二次項系數(shù)不能為0。此外要使學(xué)生認識到:二次項系數(shù)、一次項系數(shù)和常數(shù)項都是包括符號的。
例2:下列方程,哪些是一元一次方程?哪些是一元二次方程?
(1)2x+3=5x-2;(2)x2=25;
(3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。
[解]方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。
點評:通過一元一次方程與一元二次方程的比較,使學(xué)生深刻理解一元二次方程的意義。
(四)應(yīng)用新知
課本P.4,練習(xí)第3題,
(五)課堂小結(jié)
1、一元二次方程的顯著特征是:只有一個未知數(shù),并且未知數(shù)的次數(shù)是2。
2、一元二次方程的一般形式為:ax2+bx+c=0(a≠0),一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項都是根據(jù)一般形式確定的。
3、在把實際問題轉(zhuǎn)化為一元二次方程模型的過程中,體會學(xué)習(xí)一元二次方程的必要性和重要性。
(六)思考與拓展
當(dāng)常數(shù)a,b,c滿足什么條件時,方程(a-1)x2-bx+c=0是一元二次方程?這時方程的二次項系數(shù)、一次項系數(shù)分別是什么?當(dāng)常數(shù)a,b,c滿足什么條件時,方程(a-1)x2-bx+c=0是一元一次方程?
當(dāng)a≠1時是一元二次方程,這時方程的二次項系數(shù)是a-1,一次項系數(shù)是-b;當(dāng)a=1,b≠0時是一元一次方程。
布置作業(yè)
課本習(xí)題1.1中A組第1,2,3題。
教學(xué)后記:
最新九年級數(shù)學(xué)上教案例文2
教材分析
本節(jié)內(nèi)容是上一節(jié)課在學(xué)習(xí)余角補角基礎(chǔ)上學(xué)習(xí)的,學(xué)生有了一定的基礎(chǔ),為以后學(xué)習(xí)平面直角坐標系的學(xué)習(xí)做好準備。
學(xué)情分析
本節(jié)課對于學(xué)生來說學(xué)習(xí)起來并不太難,在小學(xué)階段學(xué)生已經(jīng)接觸過方位角的內(nèi)容,而且本節(jié)課內(nèi)容和生活中的方向聯(lián)系緊密,故學(xué)生比較有興趣。
教學(xué)目標
理解方位角的意義,掌握方位角的判別和應(yīng)用,通過現(xiàn)實情境,充分利用學(xué)生的生活經(jīng)驗去體會方位角的意義。
教學(xué)重點和難點
重點:方位角的判別與應(yīng)用
難點:方位角的畫法及變式題
教學(xué)過程(本文來自優(yōu)秀教育資源網(wǎng)斐.斐.課.件.園)
教學(xué)環(huán)節(jié)教師活動預(yù)設(shè)學(xué)生行為設(shè)計意圖
一 、創(chuàng)設(shè)情境,導(dǎo)入新課
二、講授新課
三、鞏固練習(xí)
四、課時小結(jié)五、布置作業(yè) 由四面八方這個成語引出學(xué)生對八個方位的理解
1.先以一個具體圖形告訴學(xué)生基本知識點,方位角一般是以正南正北為基準,然后向東或西旋轉(zhuǎn)所成的角的始邊方向。
2.師示范方位角的畫法
3.出示補充例題,引對學(xué)生通過小組合作完成。 思考并回答老師提出的問題
生觀察圖并理解老師的講解。
生觀察并獨立完成書中的例題
生先獨立思考然后與同學(xué)合作完成。 激發(fā)學(xué)生的學(xué)習(xí)興趣
通遼具體圖形使學(xué)生初步認識方位角的表示方法。
使學(xué)生通遼具體操作掌握畫方位角的方法
進一步掌握方位角的有關(guān)知識,達到知識提升。
板書設(shè)計
4.3.3余角和補角(二)——方位角
學(xué)生學(xué)習(xí)活動評價設(shè)計
我先將學(xué)生按人數(shù)分成若干小組,在課前先給學(xué)生發(fā)放導(dǎo)學(xué)單,課上先給學(xué)生充分的討論時間后學(xué)生由小組推薦代表發(fā)言,累積分數(shù),每個小組輪流回答一次,學(xué)生代表回答完畢后,其它同學(xué)補充糾錯,然后從知識點是否準確,語言是否流利,思維是否創(chuàng)新,邏輯是否合理嚴密等方面來做出評價,然后給出相應(yīng)分數(shù)。累積到小組積分中課上知識回答后在練習(xí)部分,設(shè)計搶答題,小組搶答完成。最后計算出總分評出本節(jié)課小組及個人獎,給予口頭表揚。
教學(xué)反思
本節(jié)課是在上節(jié)課余角和補角的基礎(chǔ)上學(xué)習(xí)的,而且在小學(xué)階段也已經(jīng)接觸過這部分知識了,基于這個特點,在課堂上我主要采取了自主學(xué)習(xí)的方式,學(xué)生接受的不錯,本節(jié)課的知識雖然簡單但很重要是為以后學(xué)習(xí)平面直角坐標系做準備的。出現(xiàn)的問題是有個別同學(xué)對于A看B是北偏東30度,則B看A是什么方向不太清楚,我采取的措施是讓明白的同學(xué)講給不明白的同學(xué)聽,指導(dǎo)其主要從哪方面入手解決此類問題,還有一點,學(xué)生在畫圖后容易忽略寫結(jié)論,應(yīng)強調(diào)。以前在上本節(jié)課時,我是采取的講授法,感覺學(xué)生不是很愛聽,后來一想,知道了是因為小學(xué)時他們已經(jīng)接觸了這部分知識,所以不愛聽,針對于這種情況,這次我采用了自主學(xué)習(xí)的方式感覺學(xué)生的積極性上來了,一節(jié)課氣氛很好,相信效果也不錯。以后再講這節(jié)課我將繼續(xù)采用這種方式,在此基礎(chǔ)上使其更加完善。
最新九年級數(shù)學(xué)上教案例文3
一、教學(xué)目標
1. 通過觀察、猜想、比較、具體操作等數(shù)學(xué)活動,學(xué)會用計算器求一個銳角的三角函數(shù)值。
2.經(jīng)歷利用三角函數(shù)知識解決實際 問題的過程,促進觀察、分析、歸納、交流等能力的發(fā)展。
3.感受數(shù)學(xué)與生活的密切聯(lián)系,豐富數(shù)學(xué)學(xué)習(xí)的成功體驗,激發(fā)學(xué)生繼續(xù)學(xué)習(xí) 的好奇 心,培養(yǎng)學(xué)生與他人合作交流的意識。
二、教材分析
在生活中,我們會經(jīng)常遇到這樣的問題,如測量建筑物的高度、測量江河的寬度、船舶的定位等,要解決這樣的問題,往往要應(yīng)用到三角函數(shù)知識。在上節(jié)課中已經(jīng)學(xué)習(xí)了30°, 45°,60°角的三角函數(shù)值,可以進行一些特定情況下的計算,但是生活中的問題,僅僅依靠這三個特殊角度的三角函數(shù)值來解決是不可能的。本節(jié)課讓學(xué)生使用計算器求三角函數(shù)值,讓他們從繁重的計算中解脫出來,體驗發(fā)現(xiàn)并提 出問題、分析問題、探究解決方法直至最終解決問題的過程。
三、學(xué)校及學(xué)生狀況分析
九年級的學(xué)生年齡一般在15歲左右,在這個階段,學(xué)生以抽象邏輯思維為主要發(fā)展趨勢,但在很大程度上,學(xué)生仍然要依靠具體的經(jīng)驗材料和操作活動來理解抽象的邏輯關(guān)系。另外,計算器的使用可以極大減輕學(xué)生的負擔(dān)。因此,依據(jù)教材中提供的背景材料,輔以計算器的使用,可以使學(xué)生更好地解決問題。
學(xué)生自小學(xué)起就開始使用計算器,對計算器的操作比較熟悉。同時,在前面的課程中學(xué)生已經(jīng)學(xué)習(xí)了銳角三角函數(shù)的定義,30°,45°,60°角的三角函數(shù)值以及與它們相關(guān)的簡單計算,具備了學(xué)習(xí)本節(jié)課的知識和技能。
四、教學(xué)設(shè)計
(一)復(fù)習(xí)提問
1.梯子靠在墻 上,如果梯子與地面的夾角為60°,梯子的長度為3米,那么梯子底端到墻的距離有幾米?
學(xué)生活動:根據(jù)題意,求出數(shù)值。
2.在生活中,梯子與地面的夾角總是60°嗎?
不是,可以出現(xiàn)各種角度,60°只是一種特殊現(xiàn)象。
圖1(二)創(chuàng)設(shè)情境引入課題
1如圖1,當(dāng)?shù)巧嚼|車的吊箱經(jīng)過點A到達點B時,它走過了200 m。已知纜車的路線與平面的夾角為∠A=16 °,那么纜車垂直上升的距離是多少?
哪條線段代表纜車上升的垂直距離?
線段BC。
利用哪個直角三角形可以求出BC?
在Rt△ABC中,BC=ABsin 16°,所以BC=200sin 16°。
你知道sin 16°是多少嗎?我們可以借助科學(xué)計算器求銳角三角形的三角函數(shù)值。 那么,怎樣用科學(xué)計算器求三角函數(shù)呢?
用科學(xué)計算器求三角函數(shù)值,要用sin cos和tan鍵。教師活動:(1)展示下表;(2)按表口述,讓學(xué)生學(xué)會求sin16°的值。按鍵順序顯示結(jié)果sin 16°sin16=sin 16°=0275 637 355
學(xué)生活動:按表中所列順序求出sin 16°的值。
你能求出cos 42°,tan 85°和sin 72°38′25″的值嗎?
學(xué)生活動:類比求sin 16°的方法,通過猜想、討論、相互學(xué)習(xí),利用計算器求相應(yīng)的三角函數(shù)值(操作程序如下表):
按鍵順序顯示結(jié)果cos 42°cos42 =cos 42°=0743 144 825tan 85°tan85=tan 85°=11430 052 3sin 72°38′25″sin72D′M′S
38D′M′S2
5D′M′S=sin 72°38′25″→
0954 450 321
師:利用科學(xué)計算器解決本節(jié)一開始的問題。
生:BC=200sin 16°≈5212(m)。
說明:利用學(xué)生的學(xué)習(xí)興趣,鞏固用計算器求三角函數(shù)值的操作方法。
(三)想一想
師:在本節(jié)一開始的問題中,當(dāng)纜車繼續(xù)由點B到達點D時,它又走過了 200 m,纜車由點B到達點D的行駛路線與 水平面的夾角為∠β=42°,由此你還能計算什么?
學(xué)生活動:(1)可以求出第二次上升的垂直距離DE,兩次上升的垂直距離之和,兩次經(jīng)過的水平距離,等等。(2)互相補充并在這個過程中加深對三角函數(shù)的認識。
(四)隨堂練習(xí)
1.一個人由山底爬到山頂,需先爬40°的山坡300 m,再爬30°的山坡100 m,求山高(結(jié)果精確到0.1 m)。
2.如圖2,∠DAB=56°,∠CAB=50°,AB=20 m,求圖中避雷針CD的長度(結(jié)果精確到0.01 m)。
圖2圖3
(五)檢測
如圖3,物華大廈離小偉家60 m,小偉從自家的窗中眺望大廈,并測得大廈頂部的仰角是45°,而大廈底部的俯角是37°,求大廈的高度(結(jié)果精確到01 m)。
說明:在學(xué)生練習(xí)的同時,教師要巡視指導(dǎo),觀察學(xué)生的學(xué)習(xí)情況,并針對學(xué)生的困難給予及時的指導(dǎo)。
(六)小結(jié)
學(xué)生談學(xué)習(xí)本節(jié)的感受,如本節(jié)課學(xué)習(xí)了哪些新知識,學(xué)習(xí)過程中遇到哪些困難,如何解決困難,等等。
(七)作業(yè)
1.用計算器求下列各式的值:
(1)tan 32°;(2)cos 2453°;(3)sin 62°11′;(4)tan 39°39′39″。
圖42如圖4,為了測量一條河流的寬度,一測量員在河岸邊相距180 m的P,Q兩點分別測定對岸一棵樹T的位置,T在P的正南方向,在Q的南偏西50°的方向,求河寬(結(jié)果精確到1 m)。
五、教學(xué)反思
1.本節(jié)是學(xué)習(xí)用計算器求三角函數(shù)值并加以實際應(yīng)用的內(nèi)容,通過本節(jié)的學(xué)習(xí),可以使學(xué)生充分認識到三角函數(shù)知識在現(xiàn)實世界中有著廣泛的應(yīng)用。本節(jié)課的知識點不是很多,但是學(xué)生通過積極參與課堂,提高了分析問題和解決問題的能力,并 且在意志力、自信心和理性精神 等方面得到了良好的發(fā)展。
2.教師作為學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者和幫助者,依據(jù)教材特點創(chuàng)設(shè)問題情境,從學(xué)生已有的知識背景和活動經(jīng)驗出發(fā),幫助學(xué)生取得了成功。
最新九年級數(shù)學(xué)上教案例文3篇 九年級數(shù)學(xué)教學(xué)設(shè)計案例相關(guān)文章:
★ 小學(xué)五年級下數(shù)學(xué)教案3篇(五年級數(shù)學(xué)下冊表格式教案)
★ 小學(xué)數(shù)學(xué)教案11篇(小學(xué)數(shù)學(xué)教案內(nèi)容)
★ 六年級數(shù)學(xué)廣角鴿巢問題教案3篇 六年級下冊數(shù)學(xué)廣角鴿巢問題教案
★ 小學(xué)一年級數(shù)學(xué)探究性教案最新3篇(數(shù)學(xué)探究活動 一年級)
★ 小學(xué)數(shù)學(xué)秒的認識教案4篇(人教版小學(xué)數(shù)學(xué)秒的認識教案)
★ 一年級數(shù)學(xué)下教案設(shè)計范文3篇(小學(xué)一年級下數(shù)學(xué)教學(xué)設(shè)計)
★ 蘇教一年級數(shù)學(xué)下冊教案文案3篇(一年級數(shù)學(xué)教案下冊蘇教版教案)
★ 物理九年級第十七章第一節(jié)的教案最新模板ww3篇(九年級物理第十七章課件)
★ 人教版四年級數(shù)學(xué)上冊教案12篇(四年級人教版上冊數(shù)學(xué)教案完整)