下面是范文網(wǎng)小編收集的函數(shù)數(shù)學(xué)教案12篇 數(shù)學(xué)函數(shù)課件,以供借鑒。

函數(shù)數(shù)學(xué)教案1
1.探究發(fā)現(xiàn)任意角 的終邊與 的終邊關(guān)于原點(diǎn)對(duì)稱;
2.探究發(fā)現(xiàn)任意角 的終邊和 角的終邊與單位圓的交點(diǎn)坐標(biāo)關(guān)于原點(diǎn)對(duì)稱;
3.探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系.
設(shè)計(jì)意圖
首先應(yīng)用單位圓,并以對(duì)稱為載體,用聯(lián)系的觀點(diǎn),把單位圓的性質(zhì)與三角函數(shù)聯(lián)系起來,數(shù)形結(jié)合,問題的設(shè)計(jì)提問從特殊到一般,從線對(duì)稱到點(diǎn)對(duì)稱到三角函數(shù)值之間的關(guān)系,逐步上升,一氣呵成誘導(dǎo)公式二.同時(shí)也為學(xué)生將要自主發(fā)現(xiàn)、探索公式三和四起到示范作用,下面練習(xí)設(shè)計(jì)為了熟悉公式一,讓學(xué)生感知到成功的喜悅,進(jìn)而敢于挑戰(zhàn),敢于前進(jìn)
(四)練習(xí)
利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.
(1). ;(2). ;(3). .
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問題.
(五)問題變形
由sin300= 出發(fā),用三角的定義引導(dǎo)學(xué)生求出 sin(-300),sin1500值,讓學(xué)生聯(lián)想若已知sin = ,能否求出sin( ),sin( )的值.
學(xué)生自主探究
1.探究任意角 與 的三角函數(shù)又有什么關(guān)系;
2.探究任意角 與 的三角函數(shù)之間又有什么關(guān)系.
設(shè)計(jì)意圖
遺忘的規(guī)律是先快后慢,過程的再現(xiàn)是深刻記憶的重要途徑,在經(jīng)歷思考問題-觀察發(fā)現(xiàn)-到一般化結(jié)論的探索過程,從特殊到一般,數(shù)形結(jié)合,學(xué)生對(duì)知識(shí)的理解與掌握以深入腦中,此時(shí)以類同問題的提出,大膽的放手讓學(xué)生分組討論,重現(xiàn)了探索的整個(gè)過程,加深了知識(shí)的深刻記憶,對(duì)學(xué)生無形中鼓舞了氣勢(shì),增強(qiáng)了自信,加大了挑戰(zhàn).而新知識(shí)點(diǎn)的自主探討,對(duì)教師駕馭課堂的能力也充滿了極大的挑戰(zhàn).彼此相信,彼此信任,產(chǎn)生了師生的默契,師生共同進(jìn)步.
展示學(xué)生自主探究的結(jié)果
誘導(dǎo)公式(三)、(四)
給出本節(jié)課的課題
三角函數(shù)誘導(dǎo)公式
設(shè)計(jì)意圖
標(biāo)題的后出,讓學(xué)生在經(jīng)歷整個(gè)探索過程后,還回味在探索,發(fā)現(xiàn)的成功喜悅中,猛然回頭,哦,原來知識(shí)點(diǎn)已經(jīng)輕松掌握,同時(shí)也是對(duì)本節(jié)課內(nèi)容的小結(jié).
(六)概括升華
的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個(gè)把 看成銳角時(shí)原函數(shù)值的符合.(即:函數(shù)名不變,符號(hào)看象限.)
設(shè)計(jì)意圖
簡(jiǎn)便記憶公式.
(七)練習(xí)強(qiáng)化
求下列三角函數(shù)的值:(1).sin( ); (2). cos(-20400).
設(shè)計(jì)意圖
本練習(xí)的設(shè)置重點(diǎn)體現(xiàn)一題多解,讓學(xué)生不僅學(xué)會(huì)靈活運(yùn)用應(yīng)用三角函數(shù)的誘導(dǎo)公式,還能養(yǎng)成靈活處理問題的良好習(xí)慣.這里還要給學(xué)生指出課本中的“負(fù)角”化為“正角”是針對(duì)具體負(fù)角而言的.
學(xué)生練習(xí)
化簡(jiǎn): .
設(shè)計(jì)意圖
重點(diǎn)加強(qiáng)對(duì)三角函數(shù)的誘導(dǎo)公式的綜合應(yīng)用.
(八)小結(jié)
1.小結(jié)使用誘導(dǎo)公式化簡(jiǎn)任意角的三角函數(shù)為銳角的步驟.
2.體會(huì)數(shù)形結(jié)合、對(duì)稱、化歸的思想.
3.“學(xué)會(huì)”學(xué)習(xí)的習(xí)慣.
(九)作業(yè)
1.課本p-27,第1,2,3小題;
2.附加課外題 略.
設(shè)計(jì)意圖
加強(qiáng)學(xué)生對(duì)三角函數(shù)的誘導(dǎo)公式的記憶及靈活應(yīng)用,附加題的設(shè)置有利于有能力的同學(xué)“更上一樓”.
(十)板書設(shè)計(jì):(略)
八.課后反思
對(duì)本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計(jì)之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,針對(duì)教材的內(nèi)容,編排了一系列問題,讓學(xué)生親歷知識(shí)發(fā)生、發(fā)展的過程,積極投入到思維活動(dòng)中來,通過與學(xué)生的互動(dòng)交流,關(guān)注學(xué)生的思維發(fā)展,在逐漸展開中,引導(dǎo)學(xué)生用已學(xué)的知識(shí)、方法予以解決,并獲得知識(shí)體系的更新與拓展,收到了一定的預(yù)期效果,尤其是練習(xí)的處理,讓學(xué)生通過個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),感受“觀察——?dú)w納——概括——應(yīng)用”等環(huán)節(jié),在知識(shí)的形成、發(fā)展過程中展開思維,逐步培養(yǎng)學(xué)生發(fā)現(xiàn)問題、探索問題、解決問題的能力和創(chuàng)造性思維的能力,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識(shí),達(dá)到了設(shè)計(jì)中所預(yù)想的目標(biāo)。
然而還有一些缺憾:對(duì)本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。
在以后的教學(xué)中,對(duì)于一些較簡(jiǎn)單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來設(shè)計(jì)課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過程更加切合《課程標(biāo)準(zhǔn)》的要求。用全新的理論來武裝自己,讓自己的課堂更有效。
函數(shù)數(shù)學(xué)教案2
教學(xué)目的:
知識(shí)目標(biāo):1.理解三角函數(shù)定義. 三角函數(shù)的定義域,三角函數(shù)線.
2.理解握各種三角函數(shù)在各象限內(nèi)的符號(hào).?
3.理解終邊相同的角的同一三角函數(shù)值相等.
能力目標(biāo):
1.掌握三角函數(shù)定義. 三角函數(shù)的定義域,三角函數(shù)線.
2.掌握各種三角函數(shù)在各象限內(nèi)的符號(hào).?
3.掌握終邊相同的角的同一三角函數(shù)值相等.
授課類型:復(fù)習(xí)課
教學(xué)模式:講練結(jié)合
教 具:多媒體、實(shí)物投影儀
教學(xué)過程:
一、復(fù)習(xí)引入:
1、三角函數(shù)定義. 三角函數(shù)的定義域,三角函數(shù)線,各種三角函數(shù)在各象限內(nèi)的符號(hào).誘導(dǎo)公式第一組.
2.確定下列各式的符號(hào)
(1)sin100°cs240° (2)sin5+tan5
3. .x取什么值時(shí), 有意義?
4.若三角形的兩內(nèi)角,滿足sincs 0,則此三角形必為……( )
A銳角三角形 B鈍角三角形 C直角三角形 D以上三種情況都可能
5.若是第三象限角,則下列各式中不成立的是………………( )
A:sin+cs 0 B:tansin 0
C:csct 0 D:ctcsc 0
6.已知是第三象限角且,問是第幾象限角?
二、講解新課:
1、求下列函數(shù)的定義域:
?。?) ; (2)
2、已知 ,則為第幾象限角?
3、(1) 若θ在第四象限,試判斷sin(csθ)cs(sinθ)的符號(hào);
?。?)若tan(csθ)ct(sinθ)>0,試指出θ所在的象限,并用圖形表示出 的取值范圍.
4、求證角θ為第三象限角的充分必要條件是
證明:必要性:∵θ是第三象限角,?
∴
充分性:∵sinθ<0,
∴θ是第三或第四象限角或終邊在y軸的非正半軸上
∵tanθ>0,∴θ是第一或第三象限角.?
∵sinθ<0,tanθ>0都成立.?
∴θ為第三象限角.?
5 求值:sin(-1320°)cs1110°+cs(-1020°)sin750°+tan495°.
三、鞏固與練習(xí)
1 求函數(shù) 的值域
2 設(shè)是第二象限的角,且 的范圍.
四、小結(jié):
五、課后作業(yè):
1、利用單位圓中的三角函數(shù)線,確定下列各角的取值范圍:
(1) sinα 2、角α的終邊上的點(diǎn)P與A(a,b)關(guān)于x軸對(duì)稱 ,角β的終邊上的點(diǎn)Q與A關(guān)于直線=x對(duì)稱.求sinαescβ+tanαctβ+secαcscβ的值. 學(xué)習(xí)目標(biāo): (1)理解函數(shù)的概念 (2)會(huì)用集合與對(duì)應(yīng)語言來刻畫函數(shù), (3)了解構(gòu)成函數(shù)的要素。 重點(diǎn): 函數(shù)概念的理解 難點(diǎn): 函數(shù)符號(hào)y=f(x)的理解 知識(shí)梳理: 自學(xué)課本P29—P31,填充以下空格。 1、設(shè)集合A是一個(gè)非空的實(shí)數(shù)集,對(duì)于A內(nèi) ,按照確定的對(duì)應(yīng)法則f,都有 與它對(duì)應(yīng),則這種對(duì)應(yīng)關(guān)系叫做集合A上的一個(gè)函數(shù),記作 。 2、對(duì)函數(shù) ,其中x叫做 ,x的取值范圍(數(shù)集A)叫做這個(gè)函數(shù)的 ,所有函數(shù)值的集合 叫做這個(gè)函數(shù)的 ,函數(shù)y=f(x) 也經(jīng)常寫為 。 3、因?yàn)楹瘮?shù)的值域被 完全確定,所以確定一個(gè)函數(shù)只需要 。 4、依函數(shù)定義,要檢驗(yàn)兩個(gè)給定的變量之間是否存在函數(shù)關(guān)系,只要檢驗(yàn): ?、?;② 。 5、設(shè)a, b是兩個(gè)實(shí)數(shù),且a (1)滿足不等式 的實(shí)數(shù)x的集合叫做閉區(qū)間,記作 。 (2)滿足不等式a (3)滿足不等式 或 的實(shí)數(shù)x的集合叫做半開半閉區(qū)間,分別表示為 ; 分別滿足x≥a,x>a,x≤a,x 其中實(shí)數(shù)a, b表示區(qū)間的兩端點(diǎn)。 完成課本P33,練習(xí)A 1、2;練習(xí)B 1、2、3。 例題解析 題型一:函數(shù)的概念 例1:下圖中可表示函數(shù)y=f(x)的圖像的只可能是( ) 練習(xí):設(shè)M={x| },N={y| },給出下列四個(gè)圖像,其中能表示從集合M到集合N的函數(shù)關(guān)系的有____個(gè)。 題型二:相同函數(shù)的判斷問題 例2:已知下列四組函數(shù):① 與y=1 ② 與y=x ③ 與 ?、?與 其中表示同一函數(shù)的是( ) A. ② ③ B. ② ④ C. ① ④ D. ④ 練習(xí):已知下列四組函數(shù),表示同一函數(shù)的是( ) A. 和 B. 和 C. 和 D. 和 題型三:函數(shù)的定義域和值域問題 例3:求函數(shù)f(x)= 的定義域 練習(xí):課本P33練習(xí)A組 4. 例4:求函數(shù) , ,在0,1,2處的函數(shù)值和值域。 當(dāng)堂檢測(cè) 1、下列各組函數(shù)中,表示同一個(gè)函數(shù)的是( A ) A、 B、 C、 D、 2、已知函數(shù) 滿足f(1)=f(2)=0,則f(-1)的值是( C ) A、5 B、-5 C、6 D、-6 3、給出下列四個(gè)命題: ① 函數(shù)就是兩個(gè)數(shù)集之間的對(duì)應(yīng)關(guān)系; ?、?若函數(shù)的定義域只含有一個(gè)元素,則值域也只含有一個(gè)元素; ?、?因?yàn)?的函數(shù)值不隨 的變化而變化,所以 不是函數(shù); ?、?定義域和對(duì)應(yīng)關(guān)系確定后,函數(shù)的值域也就確定了. 其中正確的有( B ) A. 1 個(gè) B. 2 個(gè) C. 3個(gè) D. 4 個(gè) 4、下列函數(shù)完全相同的是 ( D ) A. , B. , C. , D. , 5、在下列四個(gè)圖形中,不能表示函數(shù)的圖象的是 ( B ) 6、設(shè) ,則 等于 ( D ) A. B. C. 1 D.0 7、已知函數(shù) ,求 的值.( ) 三角函數(shù)的誘導(dǎo)公式 一、指導(dǎo)思想與理論依據(jù) 數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。 二.教材分析 三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教a版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時(shí),教學(xué)內(nèi)容為公式(二)、(三)、(四).教材要求通過學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對(duì)稱思想發(fā)現(xiàn)任意角 與終邊的對(duì)稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位. 三.學(xué)情分析 本節(jié)課的授課對(duì)象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容. 四.教學(xué)目標(biāo) (1).基礎(chǔ)知識(shí)目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過程,掌握正弦、余弦、正切的誘導(dǎo)公式; (2).能力訓(xùn)練目標(biāo):能正確運(yùn)用誘導(dǎo)公式求任意角的正弦、余弦、正切值,以及進(jìn)行簡(jiǎn)單的三角函數(shù)求值與化簡(jiǎn); (3).創(chuàng)新素質(zhì)目標(biāo):通過對(duì)公式的推導(dǎo)和運(yùn)用,提高三角恒等變形的能力和滲透化歸、數(shù)形結(jié)合的數(shù)學(xué)思想,提高學(xué)生分析問題、解決問題的能力; (4).個(gè)性品質(zhì)目標(biāo):通過誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀. 五.教學(xué)重點(diǎn)和難點(diǎn) 1.教學(xué)重點(diǎn) 理解并掌握誘導(dǎo)公式. 2.教學(xué)難點(diǎn) 正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡(jiǎn)三角函數(shù)式. 六.教法學(xué)法以及預(yù)期效果分析 “授人以魚不如授之以魚”, 作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想方法, 如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究.下面我從教法、學(xué)法、預(yù)期效果等三個(gè)方面做如下分析. 1.教法 數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動(dòng)的教學(xué),而不僅僅是數(shù)學(xué)活動(dòng)的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識(shí),更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì). 在本節(jié)課的教學(xué)過程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”, 由易到難,由特殊到一般,盡力營(yíng)造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂和成功的喜悅. 2.學(xué)法 “現(xiàn)代的文盲不是不識(shí)字的人,而是沒有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識(shí)點(diǎn),卻忽略了學(xué)生接受知識(shí)需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情.如何能讓學(xué)生最大程度的消化知識(shí),提高學(xué)習(xí)熱情是教者必須思考的問題. 在本節(jié)課的教學(xué)過程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問題 共同探討 解決問題 簡(jiǎn)單應(yīng)用 重現(xiàn)探索過程 練習(xí)鞏固.讓學(xué)生參與探索的全部過程,讓學(xué)生在獲取新知識(shí)及解決問題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習(xí)轉(zhuǎn)化為主動(dòng)的自主學(xué)習(xí). 3.預(yù)期效果 本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡(jiǎn)單的化簡(jiǎn)問題. 七.教學(xué)流程設(shè)計(jì) (一)創(chuàng)設(shè)情景 1.復(fù)習(xí)銳角300,450,600的三角函數(shù)值; 2.復(fù)習(xí)任意角的三角函數(shù)定義; 3.問題:由 ,你能否知道sin2100的值嗎?引如新課. 設(shè)計(jì)意圖 自信的鼓勵(lì)是增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡(jiǎn)單易做的題加強(qiáng)了每個(gè)學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問題的出現(xiàn),讓學(xué)生既有好像會(huì)做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機(jī)會(huì)證明我能行,從而思考解決的辦法. (二)新知探究 1. 讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系; 2.讓學(xué)生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點(diǎn)為 、 的坐標(biāo)有什么關(guān)系; 3.sin2100與sin300之間有什么關(guān)系. 設(shè)計(jì)意圖 由特殊問題的引入,使學(xué)生容易了解,實(shí)現(xiàn)教學(xué)過程的平淡過度,為同學(xué)們探究發(fā)現(xiàn)任意角 與 的三角函數(shù)值的關(guān)系做好鋪墊. (三)問題一般化 本文題目:高一數(shù)學(xué)教案:對(duì)數(shù)函數(shù)及其性質(zhì) 2.2.2 對(duì)數(shù)函數(shù)及其性質(zhì)(二) 內(nèi)容與解析 (一) 內(nèi)容:對(duì)數(shù)函數(shù)及其性質(zhì)(二)。 (二) 解析:從近幾年高考試題看,主要考查對(duì)數(shù)函數(shù)的性質(zhì),一般綜合在對(duì)數(shù)函數(shù)中考查.題型主要是選擇題和填空題,命題靈活.學(xué)習(xí)本部分時(shí),要重點(diǎn)掌握對(duì)數(shù)的運(yùn)算性質(zhì)和技巧,并熟練應(yīng)用. 一、 目標(biāo)及其解析: (一) 教學(xué)目標(biāo) (1) 了解對(duì)數(shù)函數(shù)在生產(chǎn)實(shí)際中的簡(jiǎn)單應(yīng)用.進(jìn)一步理解對(duì)數(shù)函數(shù)的圖象和性質(zhì); (2) 學(xué)習(xí)反函數(shù)的概念,理解對(duì)數(shù)函數(shù)和指數(shù)函數(shù)互為反函數(shù),能夠在同一坐標(biāo)上看出互為反函數(shù)的兩個(gè)函數(shù)的圖象性質(zhì).. (二) 解析 (1)在對(duì)數(shù)函數(shù) 中,底數(shù) 且 ,自變量 ,函數(shù)值 .作為對(duì)數(shù)函數(shù)的三個(gè)要點(diǎn),要做到道理明白、記憶牢固、運(yùn)用準(zhǔn)確. (2)反函數(shù)求法:①確定原函數(shù)的值域即新函數(shù)的定義域.②把原函數(shù)y=f(x)視為方程,用y表示出x.③把x、y互換,同時(shí)標(biāo)明反函數(shù)的定義域. 二、 問題診斷分析 在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問題是不易理解反函數(shù),熟練掌握其轉(zhuǎn)化關(guān)系是學(xué)好對(duì)數(shù)函數(shù)與反函數(shù)的基礎(chǔ)。 三、 教學(xué)支持條件分析 在本節(jié)課一次遞推的教學(xué)中,準(zhǔn)備使用PowerPoint 20xx。因?yàn)槭褂肞owerPoint 20xx,有利于提供準(zhǔn)確、最核心的文字信息,有利于幫助學(xué)生順利抓住老師上課思路,節(jié)省老師板書時(shí)間,讓學(xué)生盡快地進(jìn)入對(duì)問題的分析當(dāng)中。 四、 教學(xué)過程 問題一. 對(duì)數(shù)函數(shù)模型思想及應(yīng)用: ?、?出示例題:溶液酸堿度的測(cè)量問題:溶液酸堿度pH的計(jì)算公式 ,其中 表示溶液中氫離子的濃度,單位是摩爾/升. (Ⅰ)分析溶液酸堿讀與溶液中氫離子濃度之間的關(guān)系? (Ⅱ)純凈水 摩爾/升,計(jì)算純凈水的酸堿度. ?、谟懻摚撼橄蟪龅暮瘮?shù)模型? 如何應(yīng)用函數(shù)模型解決問題? 強(qiáng)調(diào)數(shù)學(xué)應(yīng)用思想 問題二.反函數(shù): ?、?引言:當(dāng)一個(gè)函數(shù)是一一映射時(shí), 可以把這個(gè)函數(shù)的因變量作為一個(gè)新函數(shù)的自變量, 而把這個(gè)函數(shù)的自變量新的函數(shù)的因變量. 我們稱這兩個(gè)函數(shù)為反函數(shù)(inverse function) ② 探究:如何由 求出x? ?、?分析:函數(shù) 由 解出,是把指數(shù)函數(shù) 中的自變量與因變量對(duì)調(diào)位置而得出的. 習(xí)慣上我們通常用x表示自變量,y表示函數(shù),即寫為 . 那么我們就說指數(shù)函數(shù) 與對(duì)數(shù)函數(shù) 互為反函數(shù) ④ 在同一平面直角坐標(biāo)系中,畫出指數(shù)函數(shù) 及其反函數(shù) 圖象,發(fā)現(xiàn)什么性質(zhì)? ?、?分析:取 圖象上的幾個(gè)點(diǎn),說出它們關(guān)于直線 的對(duì)稱點(diǎn)的坐標(biāo),并判斷它們是否在 的圖象上,為什么? ?、?探究:如果 在函數(shù) 的圖象上,那么P0關(guān)于直線 的對(duì)稱點(diǎn)在函數(shù) 的圖象上嗎,為什么? 由上述過程可以得到什么結(jié)論?(互為反函數(shù)的兩個(gè)函數(shù)的圖象關(guān)于直線 對(duì)稱) ?、呔毩?xí):求下列函數(shù)的反函數(shù): ; (師生共練 小結(jié)步驟:解x ;習(xí)慣表示;定義域) (二)小結(jié):函數(shù)模型應(yīng)用思想;反函數(shù)概念;閱讀P84材料 五、 目標(biāo)檢測(cè) 1.(20xx全國(guó)卷Ⅱ文)函數(shù)y= (x 0)的反函數(shù)是 A. (x 0) B. (x 0) C. (x 0) D. (x 0) 1.B 解析:本題考查反函數(shù)概念及求法,由原函數(shù)x 0可知A、C錯(cuò),原函數(shù)y 0可知D錯(cuò),選B. 2. (20xx廣東卷理)若函數(shù) 是函數(shù) 的反函數(shù),其圖像經(jīng)過點(diǎn) ,則 ( ) A. B. C. D. 2. B 解析: ,代入 ,解得 ,所以 ,選B. 3. 求函數(shù) 的反函數(shù) 3.解析:顯然y0,反解 可得, ,將x,y互換可得 .可得原函數(shù)的反函數(shù)為 . 【總結(jié)】20xx年已經(jīng)到來,新的一年數(shù)學(xué)網(wǎng)會(huì)為您整理更多更好的文章,希望本文高一數(shù)學(xué)教案:對(duì)數(shù)函數(shù)及其性質(zhì)能給您帶來幫助! 【教學(xué)目標(biāo):】 1.通過對(duì)初中銳角三角函數(shù)定義的回憶,掌握任意角三角函數(shù)的定義法,并掌握用單位圓中的有向線段表示三角函數(shù)值. 2.掌握已知角 終邊上一點(diǎn)坐標(biāo),求四個(gè)三角函數(shù)值.(即給角求值問題) 【教學(xué)重點(diǎn):】 任意角的三角函數(shù)的定義. 【教學(xué)難點(diǎn):】 任意角的三角函數(shù)的定義,正弦、余弦、正切這三種三角函數(shù)的幾何表示. 【教學(xué)用具:】 直尺、圓規(guī)、投影儀. 【教學(xué)步驟:】 1.設(shè)置情境 角的范圍已經(jīng)推廣,那么對(duì)任一角 是否也能像銳角一樣定義其四種三角函數(shù)呢?本節(jié)課就來討論這一問題. 2.探索研究 ?。?)復(fù)習(xí)回憶銳角三角函數(shù) 我們已經(jīng)學(xué)習(xí)過銳角三角函數(shù),知道它們都是以銳角 為自變量,以比值為函數(shù)值,定義了角 的正弦、余弦、正切、余切的三角函數(shù),本節(jié)課我們研究當(dāng)角 是一個(gè)任意角時(shí),其三角函數(shù)的定義及其幾何表示. ?。?)任意角的三角函數(shù)定義 如圖1,設(shè) 是任意角, 的終邊上任意一點(diǎn) 的坐標(biāo)是 ,當(dāng)角 在第一、二、三、四象限時(shí)的情形,它與原點(diǎn)的距離為 ,則 . 定義:①比值 叫做 的正弦,記作 ,即 . ?、诒戎?叫做 的余弦,記作 ,即 . 圖1 ?、郾戎?叫做 的正切,記作 ,即 . 同時(shí)提供顯示任意角的三角函數(shù)所在象限的課件 提問:對(duì)于確定的角 ,這三個(gè)比值的大小和 點(diǎn)在角 的終邊上的位置是否有關(guān)呢? 利用三角形相似的知識(shí),可以得出對(duì)于角 ,這三個(gè)比值的大小與 點(diǎn)在角 的終邊上的位置無關(guān),只與角 的大小有關(guān). 請(qǐng)同學(xué)們觀察當(dāng) 時(shí), 的終邊在 軸上,此時(shí)終邊上任一點(diǎn) 的橫坐標(biāo) 都等于0,所以 無意義,除此之外,對(duì)于確定的角 ,上面三個(gè)比值都是惟一確定的.把上面定義中三個(gè)比的前項(xiàng)、后項(xiàng)交換,那么得到另外三個(gè)定義. ④比值 叫做 的余切,記作 ,則 . ?、荼戎?叫做 的正割,記作 ,則 . ⑥比值 叫做 的余割,記作 ,則 . 可以看出:當(dāng) 時(shí), 的終邊在 軸上,這時(shí) 的縱坐標(biāo) 都等于0,所以 與 的值不存在,當(dāng) 時(shí), 的值不存在,除此之外,對(duì)于確定的角 ,比值 , , 分別是一個(gè)確定的實(shí)數(shù),所以我們把正弦、余弦,正切、余切,正割及余割都看成是以角為自變量,以比值為函數(shù)值的函數(shù),以上六種函數(shù)統(tǒng)稱三角函數(shù). (3)三角函數(shù)是以實(shí)數(shù)為自變量的函數(shù) 對(duì)于確定的角 ,如圖2所示, , , 分別對(duì)應(yīng)的比值各是一個(gè)確定的實(shí)數(shù),因此,正弦,余弦,正切分別可看成從一個(gè)角的集合到一個(gè)比值的集合的映射,它們都是以角為自變量,以比值為函數(shù)值的函數(shù),當(dāng)采用弧度制來度量角時(shí),每一個(gè)確定的角有惟一確定的弧度數(shù),這是一個(gè)實(shí)數(shù),所以這幾種三角函數(shù)也都可以看成是以實(shí)數(shù)為自變量,以比值為函數(shù)值的函數(shù). 即:實(shí)數(shù)→角(其弧度數(shù)等于這個(gè)實(shí)數(shù))→三角函數(shù)值(實(shí)數(shù)) ?。?)三角函數(shù)的一種幾何表示 利用單位圓有關(guān)的有向線段,作出正弦線,余弦線,正切線,如下圖3. 圖3 設(shè)任意角 的頂點(diǎn)在原點(diǎn) ,始邊與 軸的非負(fù)半軸重合,終邊與單位圓相交于點(diǎn) ,過 作 軸的垂線,垂足為 ;過點(diǎn) 作單位圓的切線,這條切線必然平行于軸,設(shè)它與角 的終邊(當(dāng) 為第一、四象限時(shí))或其反向延長(zhǎng)線(當(dāng) 為第二、三象限時(shí))相交于 ,當(dāng)角 的終邊不在坐標(biāo)軸上時(shí),我們把 , 都看成帶有方向的線段,這種帶方向的線段叫有向線段.由正弦、余弦、正切函數(shù)的定義有: 這幾條與單位圓有關(guān)的有向線段 叫做角 的正弦線、余弦線、正切線.當(dāng)角 的終邊在 軸上時(shí),正弦線、正切線分別變成一個(gè)點(diǎn);當(dāng)角 的終邊在 軸上時(shí),余弦線變成一個(gè)點(diǎn),正切線不存在. ?。?)例題講評(píng) 第二十四教時(shí) 教材:倍角公式,推導(dǎo)和差化積及積化和差公式 目的:繼續(xù)復(fù)習(xí)鞏固倍角公式,加強(qiáng)對(duì)公式靈活運(yùn)用的訓(xùn)練;同時(shí),讓學(xué)生推導(dǎo)出和差化積和積化和差公式,并對(duì)此有所了解。 過程: 一、 復(fù)習(xí)倍角公式、半角公式和萬能公式的推導(dǎo)過程: 例一、 已知 , ,tan = ,tan = ,求2 + (《教學(xué)與測(cè)試》P115 例三) 解: 又∵tan2 0,tan 0 , 2 + = 例二、 已知sin cos = , ,求 和tan的值 解:∵sin cos = 化簡(jiǎn)得: ∵ 即 二、 積化和差公式的推導(dǎo) sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )] sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )] cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )] cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )] 這套公式稱為三角函數(shù)積化和差公式,熟悉結(jié)構(gòu),不要求記憶,它的優(yōu)點(diǎn)在于將積式化為和差,有利于簡(jiǎn)化計(jì)算。(在告知公式前提下) 例三、 求證:sin3sin3 + cos3cos3 = cos32 證:左邊 = (sin3sin)sin2 + (cos3cos)cos2 = (cos4 cos2)sin2 + (cos4 + cos2)cos2 = cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2 = cos4cos2 + cos2 = cos2(cos4 + 1) = cos22cos22 = cos32 = 右邊 原式得證 三、 和差化積公式的推導(dǎo) 若令 + = , = ,則 , 代入得: 這套公式稱為和差化積公式,其特點(diǎn)是同名的正(余)弦才能使用,它與積化和差公式相輔相成,配合使用。 例四、 已知cos cos = ,sin sin = ,求sin( + )的值 解:∵cos cos = , ① sin sin = , ② 四、 小結(jié):和差化積,積化和差 五、 作業(yè):《課課練》P3637 例題推薦 13 P3839 例題推薦 13 P40 例題推薦 13 一、教學(xué)目的 1.使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義. 2.使學(xué)生會(huì)用描點(diǎn)法畫出簡(jiǎn)單函數(shù)的圖象. 二、教學(xué)重點(diǎn)、難點(diǎn) 重點(diǎn):1.理解與認(rèn)識(shí)函數(shù)圖象的意義. 2.培養(yǎng)學(xué)生的看圖、識(shí)圖能力. 難點(diǎn):在畫圖的三個(gè)步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對(duì)應(yīng)值問題. 三、教學(xué)過程 復(fù)習(xí)提問 1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.) 2.結(jié)合函數(shù)y=x的圖象,說明什么是函數(shù)的圖象? 3.說出下列各點(diǎn)所在象限或坐標(biāo)軸: 新課 1.畫函數(shù)圖象的方法是描點(diǎn)法.其步驟: (1)列表.要注意適當(dāng)選取自變量與函數(shù)的對(duì)應(yīng)值.什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個(gè)關(guān)鍵點(diǎn).比如畫函數(shù)y=3x的圖象,其關(guān)鍵點(diǎn)是原點(diǎn)(0,0),只要再選取另一個(gè)點(diǎn)如M(3,9)就可以了. 一般地,我們把自變量與函數(shù)的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對(duì)應(yīng)值列出表來. (2)描點(diǎn).我們把表中給出的有序?qū)崝?shù)對(duì),看作點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點(diǎn). (3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個(gè)點(diǎn)(0,0),(3,9)連成直線. 一般地,根據(jù)函數(shù)解析式,我們列表、描點(diǎn)是有限的幾個(gè),只需在平面直角坐標(biāo)系中,把這有限的幾個(gè)點(diǎn)連成表示函數(shù)的曲線(或直線). 2.講解畫函數(shù)圖象的三個(gè)步驟和例.畫出函數(shù)y=x+0.5的圖象. 小結(jié) 本節(jié)課的重點(diǎn)是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個(gè)步驟,自己動(dòng)手畫圖. 練習(xí) ?、龠x用課本練習(xí)(前一節(jié)已作:列表、描點(diǎn),本節(jié)要求連線) ?、谘a(bǔ)充題:畫出函數(shù)y=5x-2的圖象. 作業(yè) 選用課本習(xí)題. 四、教學(xué)注意問題 1.注意滲透數(shù)形結(jié)合思想.通過研究函數(shù)的圖象,對(duì)圖象所表示的一個(gè)變量隨另一個(gè)變量的變化而變化就更有形象而直觀的認(rèn)識(shí).把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認(rèn)識(shí)函數(shù)的本質(zhì)特征. 2.注意充分調(diào)動(dòng)學(xué)生自己動(dòng)手畫圖的積極性. 3.認(rèn)識(shí)到由于計(jì)算器和計(jì)算機(jī)的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識(shí)圖的能力. 教學(xué)目標(biāo): 1.理解函數(shù)的概念,了解函數(shù)三要素.共3頁,當(dāng)前第1頁123 2.通過對(duì)函數(shù)抽象符號(hào)的認(rèn)識(shí)與使用,使學(xué)生在符號(hào)表示方面的能力得以提高. 3.通過函數(shù)定義由變量觀點(diǎn)向映射觀點(diǎn)得過渡,使學(xué)生能從發(fā)展與聯(lián)系的角度看待數(shù)學(xué)學(xué)習(xí). 教學(xué)重點(diǎn)難點(diǎn):重點(diǎn)是在映射的基礎(chǔ)上理解函數(shù)的概念; 難點(diǎn)是對(duì)函數(shù)抽象符號(hào)的認(rèn)識(shí)與使用. 教學(xué)用具: 投影儀 教學(xué)方法: 自學(xué)研究與啟發(fā)討論式. 教學(xué)過程: 一、復(fù)習(xí)與引入 今天我們研究的內(nèi)容是函數(shù)的概念.函數(shù)并不象前面學(xué)習(xí)的集合,映射一樣我們一無所知,而是比較熟悉,所以我先找同學(xué)說說對(duì)函數(shù)的認(rèn)識(shí),如函數(shù)是什么?學(xué)過什么函數(shù)? (要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子) 學(xué)生舉出如等,待學(xué)生說完定義后教師打出投影片,給出定義之后教師也舉一個(gè)例子,問學(xué)生. 提問1.是函數(shù)嗎? (由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是函數(shù),理由是沒有兩個(gè)變量,也有的認(rèn)為是函數(shù),理由是可以可做.) 教師由此指出我們爭(zhēng)論的焦點(diǎn),其實(shí)就是函數(shù)定義的不完善的地方,這也正是我們今天研究函數(shù)定義的必要性,新的定義將在與原定義不相違背的基礎(chǔ)上從更高的觀點(diǎn),將它完善與深化. 二、新課 現(xiàn)在請(qǐng)同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問) 提問2.新的函數(shù)的定義是什么?能否用最簡(jiǎn)單的語言來概括一下. 學(xué)生的回答往往是把書上的定義念一遍,教師可以板書的形式寫出定義,但還要引導(dǎo)形式發(fā)現(xiàn)定義的本質(zhì). (板書)2.2函數(shù) 一、函數(shù)的概念 1.定義:如果a,b都是非空的數(shù)集,那么a到b的映射就叫做a到b的函數(shù),記作.其中原象集合a稱為定義域,象集c稱為值域. 問題3:映射與函數(shù)有何關(guān)系?(函數(shù)一定是映射嗎?映射一定是函數(shù)嗎?) 引導(dǎo)學(xué)生發(fā)現(xiàn),函數(shù)是特殊的映射,特殊在集合a,b必是非空的數(shù)集. 2.本質(zhì):函數(shù)是非空數(shù)集到非空數(shù)集的映射.(板書) 然后讓學(xué)生試回答剛才關(guān)于是不是函數(shù)的問題,要求從映射的角度解釋. 此時(shí)學(xué)生可以清楚的看到滿足映射觀點(diǎn)下的函數(shù)定義,故是一個(gè)函數(shù),這樣解釋就很自然. 教師繼續(xù)把問題引向深入,提出在映射的觀點(diǎn)下如何解釋是個(gè)函數(shù)? 從映射角度看可以是其中定義域是,值域是. 從剛才的分析可以看出,映射觀點(diǎn)下的函數(shù)定義更具一般性,更能揭示函數(shù)的本質(zhì).這也是我們后面要對(duì)函數(shù)進(jìn)行理論研究的一種需要.所以我們著重從映射角度再來認(rèn)識(shí)函數(shù). 3.函數(shù)的三要素及其作用(板書) 函數(shù)是映射,自然是由三件事構(gòu)成的一個(gè)整體,分別稱為定義域.值域和對(duì)應(yīng)法則.當(dāng)我們認(rèn)識(shí)一個(gè)函數(shù)時(shí),應(yīng)從這三方面去了解認(rèn)識(shí)它. 例1以下關(guān)系式表示函數(shù)嗎?為什么? (1);(2). 解:(1)由有意義得,解得.由于定義域是空集,故它不能表示函數(shù). (2)由有意義得,解得.定義域?yàn)?,值域?yàn)椋?/p> 由以上兩題可以看出三要素的作用 (1)判斷一個(gè)函數(shù)關(guān)系是否存在.(板書) 例2下列各函數(shù)中,哪一個(gè)函數(shù)與是同一個(gè)函數(shù).共3頁,當(dāng)前第2頁123 (1);(2) (3);(4). 解:先認(rèn)清,它是(定義域)到(值域)的映射,其中 ?。?/p> 再看(1)定義域?yàn)榍遥遣煌模?2)定義域?yàn)?,是不同的?/p> (4),法則是不同的; 而(3)定義域是,值域是,法則是乘2減1,與完全相同. 求解后要求學(xué)生明確判斷兩個(gè)函數(shù)是否相同應(yīng)看定義域和對(duì)應(yīng)法則完全一致,這時(shí)三要素的又一作用. (2)判斷兩個(gè)函數(shù)是否相同.(板書) 下面我們研究一下如何表示函數(shù),以前我們學(xué)習(xí)時(shí)雖然會(huì)表示函數(shù),但沒有相系統(tǒng)研究函數(shù)的表示法,其實(shí)表示法有很多,不過首先應(yīng)從函數(shù)記號(hào)說起. 4.對(duì)函數(shù)符號(hào)的理解(板書) 首先讓學(xué)生知道與的含義是一樣的,它們都表示是的函數(shù),其中是自變量,是函數(shù)值,連接的紐帶是法則,所以這個(gè)符號(hào)本身也說明函數(shù)是三要素構(gòu)成的整體.下面我們舉例說明. 例3已知函數(shù)試求(板書) 分析:首先讓學(xué)生認(rèn)清的含義,要求學(xué)生能從變量觀點(diǎn)和映射觀點(diǎn)解釋,再進(jìn)行計(jì)算. 含義1:當(dāng)自變量取3時(shí),對(duì)應(yīng)的函數(shù)值即; 含義2:定義域中原象3的象,根據(jù)求象的方法知.而應(yīng)表示原象的象,即. 計(jì)算之后,要求學(xué)生了解與的區(qū)別,是常量,而是變量,只是中一個(gè)特殊值. 最后指出在剛才的題目中是用一個(gè)具體的解析式表示的,而以后研究的函數(shù)不一定能用一個(gè)解析式表示,此時(shí)我們需要用其他的方法表示,具體的方法下節(jié)課再進(jìn)一步研究. 三、小結(jié) 1.函數(shù)的定義 2.對(duì)函數(shù)三要素的認(rèn)識(shí) 3.對(duì)函數(shù)符號(hào)的認(rèn)識(shí) 四、作業(yè):略 五、板書設(shè)計(jì) 2.2函數(shù)例1.例3. 一.函數(shù)的概念 1.定義 2.本質(zhì)例2.小結(jié): 3.函數(shù)三要素的認(rèn)識(shí)及作用 4.對(duì)函數(shù)符號(hào)的理解 探究活動(dòng) 函數(shù)在數(shù)學(xué)及實(shí)際生活中有著廣泛的應(yīng)用,在我們身邊就存在著很多與函數(shù)有關(guān)的問題如在我們身邊就有不少分段函數(shù)的實(shí)例,下面就是一個(gè)生活中的分段函數(shù). 夏天,大家都喜歡吃西瓜,而西瓜的價(jià)格往往與西瓜的重量相關(guān).某人到一個(gè)水果店去買西瓜,價(jià)格表上寫的是:6斤以下,每斤0.4元.6斤以上9斤以下,每斤0.5元,9斤以上,每斤0.6元.此人挑了一個(gè)西瓜,稱重后店主說5元1角,1角就不要了,給5元吧,可這位聰明的顧客馬上說,你不僅沒少要,反而多收了我錢,當(dāng)顧客講出理由,店主只好承認(rèn)了錯(cuò)誤,照實(shí)收了錢. 同學(xué)們,你知道顧客是怎樣店主坑人了呢?其實(shí)這樣的數(shù)學(xué)問題在我們身邊有很多,只要你注意觀察,積累,并學(xué)以至用,就能成為一個(gè)聰明人,因?yàn)?strong>數(shù)學(xué)可以使人聰明起來. 答案: 若西瓜重9斤以下則最多應(yīng)付4.5元,若西瓜重9斤以上,則最少也要5.4元,不可能出現(xiàn)5.1元這樣的價(jià)錢,所以店主坑人了. 一、銳角三角函數(shù) 正弦和余弦 第一課時(shí):正弦和余弦(1) 教學(xué)目的 1,使學(xué)生了解本章所要解決的新問題是:已知直角三角形的一條邊和另一個(gè)元素(一邊或一銳角),求這個(gè)直角三角形的其他元素。 2,使學(xué)生了解“在直角三角形中,當(dāng)銳角A取固定值時(shí),它的對(duì)邊與斜邊的比值也是一個(gè)固定值。 重點(diǎn)、難點(diǎn)、關(guān)鍵 1,重點(diǎn):正弦的概念。 2,難點(diǎn):正弦的概念。 3,關(guān)鍵:相似三角形對(duì)應(yīng)邊成比例的性質(zhì)。 教學(xué)過程 一、復(fù)習(xí)提問 1、什么叫直角三角形? 2,如果直角三角形ABC中∠C為直角,它的直角邊是什么?斜邊是什么?這個(gè)直角三角形可用什么記號(hào)來表示? 二、新授 1,讓學(xué)生閱讀教科書第一頁上的插圖和引例,然后回答問題: ?。?)這個(gè)有關(guān)測(cè)量的實(shí)際問題有什么特點(diǎn)?(有一個(gè)重要的測(cè)量點(diǎn)不可能到達(dá)) ?。?)把這個(gè)實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型后,其圖形是什么圖形?(直角三角形) ?。?)顯然本例不能用勾股定理求解,那么能不能根據(jù)已知條件,在地面上或紙上畫出另一個(gè)與它全等的直角三角形,并在這個(gè)全等圖形上進(jìn)行測(cè)量?(不一定能,因?yàn)樾边吋此艿拈L(zhǎng)度是一個(gè)較大的數(shù)值,這樣做就需要較大面積的平地或紙張,再說畫圖也不方便。) (4)這個(gè)實(shí)際問題可歸結(jié)為怎樣的數(shù)學(xué)問題?(在Rt△ABC中,已知銳角A和斜邊求∠A的對(duì)邊BC。) 但由于∠A不一定是特殊角,難以運(yùn)用學(xué)過的定理來證明BC的長(zhǎng)度,因此考慮能否通過式子變形和計(jì)算來求得BC的值。 2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的對(duì)邊與斜邊的比值都等于1/2,根據(jù)這個(gè)比值,已知斜邊AB的長(zhǎng),就能算出∠A的對(duì)邊BC的長(zhǎng)。 類似地,在所有等腰的那塊三角尺中,由勾股定理可得∠A的對(duì)邊/斜邊=BC/AB=BC/=1/=/2 這就是說,當(dāng)∠A=450時(shí),∠A的對(duì)邊與斜邊的比值等于/2,根據(jù)這個(gè)比值,已知斜邊AB的長(zhǎng),就能算出∠A的'對(duì)邊BC的長(zhǎng)。 那么,當(dāng)銳角A取其他固定值時(shí),∠A的對(duì)邊與斜邊的比值能否也是一個(gè)固定值呢? ?。ㄒ龑?dǎo)學(xué)生回答;在這些直角三角形中,∠A的對(duì)邊與斜邊的比值仍是一個(gè)固定值。) 三、鞏固練習(xí): 在△ABC中,∠C為直角。 1,如果∠A=600,那么∠B的對(duì)邊與斜邊的比值是多少? 2,如果∠A=600,那么∠A的對(duì)邊與斜邊的比值是多少? 3,如果∠A=300,那么∠B的對(duì)邊與斜邊的比值是多少? 4,如果∠A=450,那么∠B的對(duì)邊與斜邊的比值是多少? 四、小結(jié) 五、作業(yè) 1,復(fù)習(xí)教科書第1-3頁的全部?jī)?nèi)容。 2,選用課時(shí)作業(yè)設(shè)計(jì)。 二次函數(shù)的性質(zhì)與圖像 【學(xué)習(xí)目標(biāo)】 1、使學(xué)生掌握研究二次函數(shù)的一般方法——配方法; 2、應(yīng)“描點(diǎn)法”畫出二次函數(shù) ( 的圖像,通過圖像總結(jié)二次函數(shù)的性質(zhì); 3、通過研究二次函數(shù)和圖像的性質(zhì),能進(jìn)一步體會(huì)研究一般函數(shù)的方法,能由特殊到一般地研究問題。 【自主學(xué)習(xí)】 二次函數(shù)的性質(zhì)與圖像 1)定義:函數(shù) 叫二次函數(shù),它的定義域是 。特別地,當(dāng) 時(shí),二次函數(shù)變?yōu)?( 。 2)函數(shù) 的圖像和性質(zhì): ?。?)函數(shù) 的圖像是一條頂點(diǎn)為原點(diǎn)的拋物線,當(dāng) 時(shí),拋物線開口 ,當(dāng) 時(shí),拋物線開口 。 (2)函數(shù) 為 (填“奇函數(shù)”或“偶函數(shù)”)。 ?。?)函數(shù) 的圖像的對(duì)稱軸為 。 3)二次函數(shù) 的性質(zhì) ?。?)函數(shù)的圖像是 ,拋物線的頂點(diǎn)坐標(biāo)是 ,拋物線的對(duì)稱軸是直線 。 ?。?)當(dāng) 時(shí),拋物線開口向上,函數(shù)在 處取得最小值 ;在區(qū)間 上是減函數(shù),在 上是增函數(shù)。 ?。?)當(dāng) 時(shí),拋物線開口向下,函數(shù)在 處取得最大值 ;在區(qū)間 上是增函數(shù),在 上是減函數(shù)。 跟蹤1、試述二次函數(shù) 的性質(zhì),并作出它的圖像。 跟蹤2、研討二次函數(shù) 的性質(zhì)和圖像。 跟蹤3、求函數(shù) 的值域和它的圖像的對(duì)稱軸,并說出它在那個(gè)區(qū)間上是增函數(shù)?在那個(gè)區(qū)間上是減函數(shù)? 跟蹤4、課本P60練習(xí)B 1、 【歸納總結(jié)】 研究二次函數(shù)的圖像與性質(zhì)的思路是什么? 函數(shù)二次函數(shù) (a、b、c是常數(shù),a≠0) 圖像a>0 a<0 性質(zhì) 【典例示范】 例1:將函數(shù) 配方,確定其對(duì)稱軸和頂點(diǎn)坐標(biāo),求出 它的單調(diào)區(qū)間及最大值或最小值,并畫出它的圖像。 例2:二次函數(shù) 與 的圖像開口大小相同,開口方向也相同。已知函數(shù) 的解析式和 的頂點(diǎn),寫出符合下列條件的函數(shù) 的解析式。 ?。?)函數(shù) , 的圖像的頂點(diǎn)是(4, ); (2)函數(shù) , 圖像的頂點(diǎn)是 。 教學(xué)目標(biāo) 1.理解函數(shù)的概念,了解函數(shù)的三種表示法,會(huì)求函數(shù)的定義域. (1)了解函數(shù)是特殊的映射,是非空數(shù)集a到非空數(shù)集b的映射.能理解函數(shù)是由定義域,值域,對(duì)應(yīng)法則三要素構(gòu)成的整體. (2)能正確認(rèn)識(shí)和使用函數(shù)的三種表示法:解析法,列表法,和圖象法.了解每種方法的優(yōu)點(diǎn). (3)能正確使用“區(qū)間”及相關(guān)符號(hào),能正確求解各類函數(shù)的定義域. 2.通過函數(shù)概念的學(xué)習(xí),使學(xué)生在符號(hào)表示,運(yùn)算等方面的能力有所提高. ?。?)對(duì)函數(shù)記號(hào)有正確的理解,準(zhǔn)確把握其含義,了解(為常數(shù))與的區(qū)別與聯(lián)系; (2)在求函數(shù)定義域中注意運(yùn)算的合理性與簡(jiǎn)潔性. 3.通過函數(shù)定義由變量觀點(diǎn)向映射觀點(diǎn)的過渡,是學(xué)生能從發(fā)展的角度看待數(shù)學(xué)的學(xué)習(xí). 教學(xué)建議 1.教材分析 ?。?)知識(shí)結(jié)構(gòu) ?。?)重點(diǎn)難點(diǎn)分析 本小節(jié)的重點(diǎn)是在映射的基礎(chǔ)上理解函數(shù)的概念.,主要包括對(duì)函數(shù)的定義,表示法,三要素的作用的理解與認(rèn)識(shí).教學(xué)難點(diǎn)是函數(shù)的定義和函數(shù)符號(hào)的認(rèn)識(shí)與使用. ①由于學(xué)生在初中已學(xué)習(xí)了函數(shù)的變量觀點(diǎn)下的定義,并具體研究了幾類最簡(jiǎn)單的函數(shù),對(duì)函數(shù)并不陌生,所以在高中重新定義函數(shù)時(shí),重要的是讓學(xué)生認(rèn)識(shí)到它的優(yōu)越性,它從根本上揭示了函數(shù)的本質(zhì),由定義域,值域,對(duì)應(yīng)法則三要素構(gòu)成的整體,讓學(xué)生能主動(dòng)將函數(shù)與函數(shù)解析式區(qū)分開來.對(duì)這一點(diǎn)的認(rèn)識(shí)對(duì)于后面函數(shù)的性質(zhì)的研究都有很大的幫助. ?、谠诒竟?jié)中首次引入了抽象的函數(shù)符號(hào),學(xué)生往往只接受具體的函數(shù)解析式,而不能接受,所以應(yīng)讓學(xué)生從符號(hào)的含義認(rèn)識(shí)開始,在符號(hào)中,在法則下對(duì)應(yīng),不是與的乘積,符號(hào)本身就是三要素的體現(xiàn).由于所代表的對(duì)應(yīng)法則不一定能用解析式表示,故函數(shù)表示的方法除了解析法以外,還有列表法和圖象法.此外本身還指明了誰是誰的函數(shù),有利于我們分清函數(shù)解析式中的常量與變量.如,它應(yīng)表示以為自變量的二次函數(shù),而如果寫成,則我們就不能準(zhǔn)確了解誰是變量,誰是常量,當(dāng)為變量時(shí),它就不代表二次函數(shù). 2.教法建議 ?。?)高中對(duì)函數(shù)內(nèi)容的學(xué)習(xí)是初中函數(shù)內(nèi)容的深化和延伸.深化首先體現(xiàn)在函數(shù)的定義更具一般性.故教學(xué)中可以讓學(xué)生舉出自己熟悉的函數(shù)例子,并用變量觀點(diǎn)加以解釋,教師再給出如:是不是函數(shù)的問題,用變量定義解釋顯得很勉強(qiáng),而如果從集合與映射的觀點(diǎn)來解釋就十分自然,所以有重新認(rèn)識(shí)函數(shù)的必要. ?。?)對(duì)函數(shù)是三要素構(gòu)成的整體的認(rèn)識(shí),一方面可以通過對(duì)符號(hào)的了解與使用來強(qiáng)化,另一方面也可通過判斷兩個(gè)函數(shù)是否相同來配合.在這類題目中,可以進(jìn)一步體現(xiàn)出三要素整體的作用. ?。?)關(guān)于對(duì)分段函數(shù)的認(rèn)識(shí),首先它的出現(xiàn)是一種需要,可以給出一些實(shí)際的例子來說明這一點(diǎn),對(duì)自變量不同取值,用不同的解析式表示同一個(gè)函數(shù)關(guān)系,所以是一個(gè)函數(shù)而不是幾個(gè)函數(shù),其次還可以舉一些數(shù)學(xué)的例子如這樣的函數(shù),若利用絕對(duì)值的定義它就可以寫成,這就是一個(gè)分段函數(shù),從這個(gè)題中也可以看出分段函數(shù)是一個(gè)函數(shù). 函數(shù)數(shù)學(xué)教案12篇 數(shù)學(xué)函數(shù)課件相關(guān)文章: ★ 最新一年級(jí)數(shù)學(xué)教學(xué)工作總結(jié)3篇 一年級(jí)數(shù)學(xué)教學(xué)工作總結(jié)上期 ★ 交通安全班會(huì)教案3篇 班會(huì)交通安全教育教案 ★ 開學(xué)第一課主題班會(huì)教案最新3篇 主題班會(huì)《開學(xué)第一課》 ★ 數(shù)學(xué)教師年終個(gè)人工作總結(jié)2022【7篇】(精選教師個(gè)人工作總結(jié)通用) ★ 暑假安全知識(shí)教育教案范文3篇 小學(xué)生暑假安全教育教案詳案 ★ 暑假學(xué)校防溺水安全教案6篇 學(xué)校暑假防溺水安全方案 ★ 數(shù)學(xué)教師培訓(xùn)方案2篇 小學(xué)數(shù)學(xué)教師培訓(xùn)方案 ★ 小三語文上冊(cè)教學(xué)計(jì)劃6篇 三級(jí)上冊(cè)語文教案教學(xué)計(jì)劃 ★ 一個(gè)小村莊的故事教案7篇 小學(xué)語文一個(gè)小村莊的故事教案函數(shù)數(shù)學(xué)教案3
函數(shù)數(shù)學(xué)教案4
函數(shù)數(shù)學(xué)教案5
函數(shù)數(shù)學(xué)教案6
函數(shù)數(shù)學(xué)教案7
函數(shù)數(shù)學(xué)教案8
函數(shù)數(shù)學(xué)教案9
函數(shù)數(shù)學(xué)教案10
函數(shù)數(shù)學(xué)教案11
函數(shù)數(shù)學(xué)教案12