下面是范文網(wǎng)小編收集的八年級《函數(shù)》數(shù)學(xué)教案3篇 人教版數(shù)學(xué)八年級上冊函數(shù)教案,以供參考。

八年級《函數(shù)》數(shù)學(xué)教案1
八年級下數(shù)學(xué)教案-變量與函數(shù)(2)
一、教學(xué)目的
1.使學(xué)生理解自變量的取值范圍和函數(shù)值的意義。
2.使學(xué)生理解求自變量的取值范圍的兩個依據(jù)。
3.使學(xué)生掌握關(guān)于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會求其函數(shù)值。
4.通過求函數(shù)中自變量的取值范圍使學(xué)生進一步理解函數(shù)概念。
二、教學(xué)重點、難點
重點:函數(shù)自變量取值的求法。
難點:函靈敏處變量取值的確定。
三、教學(xué)過程
復(fù)習(xí)提問
1.函數(shù)的定義是什么?函數(shù)概念包含哪三個方面的內(nèi)容?
2.什么叫分式?當(dāng)x取什么數(shù)時,分式x+2/2x+3有意義?
?。ù穑悍帜咐锖凶帜傅挠欣硎浇蟹质?,分母≠0,即x≠3/2。)
3.什么叫二次根式?使二次根式成立的條件是什么?
(答:根指數(shù)是2的根式叫二次根式,使二次根式成立的條件是被開方數(shù)≥0。)
4.舉出一個函數(shù)的實例,并指出式中的變量與常量、自變量與函數(shù)。
新課
1.結(jié)合同學(xué)舉出的實例說明解析法的意義:用教學(xué)式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。
2.結(jié)合同學(xué)舉出的實例,說明函數(shù)的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據(jù)是:
?。?)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達式)有意義。
?。?)自變量取值范圍要使實際問題有意義。
3.講解P93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的分式;(4)題給出的是只含有一個自變量的二次根式。
推廣與聯(lián)想:請同學(xué)按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。
4.講解P93中例3。結(jié)合例3引出函數(shù)值的意義。并指出兩點:
(1)例3中的4個小題歸納起來仍是三類題型。
(2)求函數(shù)值的問題實際是求代數(shù)式值的`問題。
補充例題
求下列函數(shù)當(dāng)x=3時的函數(shù)值:
?。?)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。
(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)
小結(jié)
1.解析法的意義:用數(shù)學(xué)式子表示函數(shù)的方法叫解析法。
2.求函數(shù)自變量取值范圍的兩個方法(依據(jù)):
(1)要使函數(shù)的解析式有意義。
?、俸瘮?shù)的解析式是整式時,自變量可取全體實數(shù);
?、诤瘮?shù)的解析式是分式時,自變量的取值應(yīng)使分母≠0;
?、酆瘮?shù)的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)≥0。
?。?)對于反映實際問題的函數(shù)關(guān)系,應(yīng)使實際問題有意義。
3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。
練習(xí):P94中1,2,3。
作業(yè):P95~P96中A組3,4,5,6,7。B組1,2。
四、教學(xué)注意問題
1.注意滲透與訓(xùn)練學(xué)生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結(jié)構(gòu)仍是三類題型:整式、分式、二次根式。
2.注意訓(xùn)練與培養(yǎng)學(xué)生的優(yōu)質(zhì)聯(lián)想能力。要求學(xué)生仿照例題自編題目是有效手段。
3.注意培養(yǎng)學(xué)生對于“具體問題要具體分析”的良好學(xué)習(xí)方法。比如對于有實際意義來確定,由于實際問題千差萬別,所以我們就要具體分析,靈活處置。
八年級《函數(shù)》數(shù)學(xué)教案2
一、教學(xué)目的
1.使學(xué)生進一步理解自變量的取值范圍和函數(shù)值的意義.
2.使學(xué)生會用描點法畫出簡單函數(shù)的圖象.
二、教學(xué)重點、難點
重點:1.理解與認(rèn)識函數(shù)圖象的意義.
2.培養(yǎng)學(xué)生的看圖、識圖能力.
難點:在畫圖的三個步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對應(yīng)值問題.
三、教學(xué)過程
復(fù)習(xí)提問
1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)
2.結(jié)合函數(shù)y=x的圖象,說明什么是函數(shù)的圖象?
3.說出下列各點所在象限或坐標(biāo)軸:
新課
1.畫函數(shù)圖象的方法是描點法.其步驟:
(1)列表.要注意適當(dāng)選取自變量與函數(shù)的對應(yīng)值.什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個關(guān)鍵點.比如畫函數(shù)y=3x的圖象,其關(guān)鍵點是原點(0,0),只要再選取另一個點如M(3,9)就可以了.
一般地,我們把自變量與函數(shù)的對應(yīng)值分別作為點的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的`對應(yīng)值列出表來.
(2)描點.我們把表中給出的有序?qū)崝?shù)對,看作點的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點.
(3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個點(0,0),(3,9)連成直線.
一般地,根據(jù)函數(shù)解析式,我們列表、描點是有限的幾個,只需在平面直角坐標(biāo)系中,把這有限的幾個點連成表示函數(shù)的曲線(或直線).
2.講解畫函數(shù)圖象的三個步驟和例.畫出函數(shù)y=x+0.5的圖象.
小結(jié)
本節(jié)課的重點是讓學(xué)生根據(jù)函數(shù)解析式畫函數(shù)圖象的三個步驟,自己動手畫圖.
練習(xí)
?、龠x用課本練習(xí)(前一節(jié)已作:列表、描點,本節(jié)要求連線)
②補充題:畫出函數(shù)y=5x-2的圖象.
作業(yè)
選用課本習(xí)題.
四、教學(xué)注意問題
1.注意滲透數(shù)形結(jié)合思想.通過研究函數(shù)的圖象,對圖象所表示的一個變量隨另一個變量的變化而變化就更有形象而直觀的認(rèn)識.把函數(shù)的解析式、列表、圖象三者結(jié)合起來,更有利于認(rèn)識函數(shù)的本質(zhì)特征.
2.注意充分調(diào)動學(xué)生自己動手畫圖的積極性.
3.認(rèn)識到由于計算器和計算機的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識圖的能力.
八年級《函數(shù)》數(shù)學(xué)教案3
知識目標(biāo):理解函數(shù)的概念,能準(zhǔn)確識別出函數(shù)關(guān)系中的自變量和函數(shù)
能力目標(biāo):會用變化的量描述事物
情感目標(biāo):回用運動的觀點觀察事物,分析事物
重點:函數(shù)的概念
難點:函數(shù)的概念
教學(xué)媒體:多媒體電腦,計算器
教學(xué)說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會確定自變量的取值范圍
教學(xué)設(shè)計:
引入:
信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數(shù)值表,你能看出小明各周歲時體重是如何變化的嗎?
新課:
問題:(1)如圖是某日的氣溫變化圖。
?、?這張圖告訴我們哪些信息?
?、?這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?
(2)收音機上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標(biāo)刻的',下表中是一些對應(yīng)的數(shù):
?、?這表告訴我們哪些信息?
② 這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個表達式表示出來嗎?
一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當(dāng)x=a時,y=b,那么b叫做當(dāng)自變量的值為a時的函數(shù)值。
范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:
(5) 長方形的寬一定時,其長與面積;
(6) 等腰三角形的底邊長與面積;
(7) 某人的年齡與身高;
活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系
思考:自變量是否可以任意取值
例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。
(1) 寫出表示y與x的函數(shù)關(guān)系式.
(2) 指出自變量x的取值范圍.
(3) 汽車行駛200km時,油箱中還有多少汽油?
解:(1)y=50-0.1x
(2)0500
(3)x=200,y=30
活動2:練習(xí)教材9頁練習(xí)
小結(jié):(1)函數(shù)概念
(2)自變量,函數(shù)值
(3)自變量的取值范圍確定
作業(yè):18頁:2,3,4題
八年級《函數(shù)》數(shù)學(xué)教案3篇 人教版數(shù)學(xué)八年級上冊函數(shù)教案相關(guān)文章:
★ 八年級數(shù)學(xué)教案10篇 八年級數(shù)學(xué)復(fù)習(xí)教案
★ 人教版六年級上冊《比的意義》數(shù)學(xué)教案3篇(比的意義教學(xué)設(shè)計人教版六上)
★ 人教版三年級下冊數(shù)學(xué)教案9篇(三年級數(shù)學(xué)下冊優(yōu)質(zhì)課教案)
★ 二年級上冊人教版數(shù)學(xué)教案7篇 冀教版二年級上冊數(shù)學(xué)教案
★ 四年級數(shù)學(xué)教案人教版下冊6篇 人教版小學(xué)數(shù)學(xué)四年級教案下冊