亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

關(guān)于八年級數(shù)學(xué)教案模板6篇(八年級數(shù)學(xué)教案模板范文)

時間:2023-09-26 20:30:00 教案

  下面是范文網(wǎng)小編收集的關(guān)于八年級數(shù)學(xué)教案模板6篇(八年級數(shù)學(xué)教案模板范文),以供參閱。

關(guān)于八年級數(shù)學(xué)教案模板6篇(八年級數(shù)學(xué)教案模板范文)

關(guān)于八年級數(shù)學(xué)教案模板1

  1、教材分析

  (1)知識結(jié)構(gòu)

  (2)重點(diǎn)、難點(diǎn)分析

  本節(jié)內(nèi)容的重點(diǎn)是線段垂直平分線定理及其逆定理. 定理反映了線段垂直平分線的性質(zhì),是證明兩條線段相等的依據(jù);逆定理反映了線段垂直平分線的判定,是證明某點(diǎn)在某條直線上及一條直線是已知線段的垂直平分線的依據(jù).

  本節(jié)內(nèi)容的難點(diǎn)是定理及逆定理的關(guān)系. 垂直平分線定理和其逆定理,題設(shè)與結(jié)論正好相反. 學(xué)生在應(yīng)用它們的時候,容易混淆,幫助學(xué)生認(rèn)識定理及其逆定理的區(qū)別,這是本節(jié)的難點(diǎn).

  2、 教法建議

  本節(jié)課教學(xué)模式主要采用“學(xué)生主體性學(xué)習(xí)”的教學(xué)模式. 提出問題讓學(xué)生想,設(shè)計(jì)問題讓學(xué)生做,錯誤原因讓學(xué)生說,方法與規(guī)律讓學(xué)生歸納. 教師的作用在于組織、點(diǎn)撥、引導(dǎo),促進(jìn)學(xué)生主動探索,積極思考,大膽想象,總結(jié)規(guī)律,充分發(fā)揮學(xué)生的主體作用,讓學(xué)生真正成為教學(xué)活動的主人. 具體說明如下:

  (1)參與探索發(fā)現(xiàn),領(lǐng)略知識形成過程

  學(xué)生前面,學(xué)習(xí)過線段垂直平分線的概念,這樣由復(fù)習(xí)概念入手,順其自然提出問題:在垂直平分線上任取一點(diǎn)P,它到線段兩端的距離有何關(guān)系?學(xué)生會很容易得出“相等”. 然后學(xué)生完成證明,找一名學(xué)生的證明過程,進(jìn)行投影總結(jié). 最后,由學(xué)生將上述問題,用文字的形式進(jìn)行歸納,即得線段垂直平分線定理. 這樣讓學(xué)生親自動手實(shí)踐,積極參與發(fā)現(xiàn),激發(fā)了學(xué)生的認(rèn)識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會.

  (2)采用“類比”的學(xué)習(xí)方法,獲取逆定理

  線段垂直平分線的定理及逆定理的證明都比較簡單,學(xué)生學(xué)習(xí)一般沒有什么困難,這一節(jié)的難點(diǎn)仍然的定理及逆定理的關(guān)系,為了很好的突破這一難點(diǎn),教學(xué)時采用與角的平分線的性質(zhì)定理和逆定理對照,類比的方法進(jìn)行教學(xué),使學(xué)生進(jìn)一步認(rèn)識這兩個定理的區(qū)別和聯(lián)系.

  (3) 通過問題的解決,讓學(xué)生學(xué)會從不同角度分析問題、解決問題;讓學(xué)生學(xué)會引申、變更問題,以培養(yǎng)學(xué)生發(fā)現(xiàn)問題、提出問題的創(chuàng)造性能力.

關(guān)于八年級數(shù)學(xué)教案模板2

  教學(xué)目標(biāo)

  一、教學(xué)知識點(diǎn):

  1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).

  二、能力訓(xùn)練要求:

  1.通過具體實(shí)例認(rèn)識旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.

  2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個圖形對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).

  三、情感與價值觀要求

  1.經(jīng)歷對生活中與旋轉(zhuǎn)現(xiàn)象有關(guān)的圖形進(jìn)行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步的審美能力,增強(qiáng)對圖形欣賞的意識.

  2.通過學(xué)習(xí)使學(xué)生能用數(shù)學(xué)的眼光看待生活中的有關(guān)問題,進(jìn)一步發(fā)展學(xué)生的數(shù)學(xué)觀.

  教學(xué)重點(diǎn):旋轉(zhuǎn)的基本性質(zhì).

  教學(xué)難點(diǎn):探索旋轉(zhuǎn)的基本性質(zhì).

  教學(xué)方法:

  1、遵循學(xué)生是學(xué)習(xí)的主人的原則,在為學(xué)生創(chuàng)造大量實(shí)例的基礎(chǔ)上,引導(dǎo)學(xué)生自主思考、交流、討論、歸納、學(xué)習(xí)。

  2、采用多媒體課件輔助教學(xué)。

  教學(xué)過程:

  一.巧設(shè)情景問題,引入課題

  日常生活中,我們經(jīng)常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動、汽車方向盤的轉(zhuǎn)動、轆轤打水的情景). (1)上面情景中的轉(zhuǎn)動現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉(zhuǎn)動過程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉(zhuǎn)動呢?

  1.在這些轉(zhuǎn)動的現(xiàn)象中,它們都是繞著一個點(diǎn)轉(zhuǎn)動的.

  2.每個物體的轉(zhuǎn)動都是向同一個方向轉(zhuǎn)動.

  3.鐘表的指針、鐘擺在轉(zhuǎn)動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.

  4.汽車的方向盤在轉(zhuǎn)動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點(diǎn)的位置所變化.同學(xué)們觀察得很仔細(xì),我們把這樣的轉(zhuǎn)動叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來探討生活中的旋轉(zhuǎn).

  二.講授新課

  在數(shù)學(xué)中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個圖形繞著一個定點(diǎn)沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運(yùn)動稱為旋轉(zhuǎn)(circumrotate).這個定點(diǎn)稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角.注意:“將一個圖形繞一個定點(diǎn)沿某個方向轉(zhuǎn)動一個角度”意味著圖形上的每個點(diǎn)同時都按相同的方式轉(zhuǎn)動相同的角度.在物體繞著一個定點(diǎn)轉(zhuǎn)動時,它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.

  議一議:(課本67頁)答:(1)旋轉(zhuǎn)中心是O點(diǎn),旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.

  (2)四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置.這時點(diǎn)A旋轉(zhuǎn)到點(diǎn)D的位置,點(diǎn)B旋轉(zhuǎn)到點(diǎn)E的位置.

  (3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長短、形狀沒有變化,所以O(shè)A與OD是相等的.同樣,線段OB與OE是相等的.

  (4)因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過程中,圖形上的每個點(diǎn)同時都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的.

  (4)也可以這樣理解:因?yàn)樗倪呅蜛OBC繞O點(diǎn)旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因?yàn)椤螧OD是公共角,所以,∠AOD與∠BOE是相等的.

  看上圖,四邊形DOEF是由四邊形AOBC繞O點(diǎn)旋轉(zhuǎn)得到的,經(jīng)過旋轉(zhuǎn),點(diǎn)A移動到點(diǎn)D的位置,點(diǎn)B移動到點(diǎn)E的位置,點(diǎn)C移動到點(diǎn)F的位置,則點(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E、點(diǎn)C與點(diǎn)F就是對應(yīng)點(diǎn).從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的性質(zhì)呢?

  答:因?yàn)镺是旋轉(zhuǎn)中心,點(diǎn)A與點(diǎn)D是對應(yīng)點(diǎn),點(diǎn)B與點(diǎn)E是對應(yīng)點(diǎn),且OA=OD,OB=OE,所以可以知道:對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的長度是相等的.

  因?yàn)辄c(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)E是對應(yīng)點(diǎn),且∠AOD=∠BOE,所以由此可以知道:對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角是互相相等的.

  由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過旋轉(zhuǎn),圖形上的每一點(diǎn)都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度.任意一對對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等.

 ?。劾?](課本68頁例1)

  [師生共析]經(jīng)演示(鐘表實(shí)物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時的度數(shù)是360°,一周需要60分,因此每分鐘分針?biāo)D(zhuǎn)過的度數(shù)是6°,這樣20分時,分針逆轉(zhuǎn)的角度即可求出.

  解:(見課本68頁)

  書上68頁做一做

  三.課堂練習(xí)

  課本P69隨堂練習(xí).

  1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.

  四.課時小結(jié)

  五.課后作業(yè):課本P69習(xí)題3.4 1、2、3.

  六.活動與探究

  1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過程:讓學(xué)生畫圖、找規(guī)律,也可讓他們通過剪切,找到旋轉(zhuǎn)規(guī)律.

  結(jié)果:旋轉(zhuǎn)現(xiàn)象為:

  整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.

  整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的.

  整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.

  2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉(zhuǎn)得到的?

  過程:同樣讓學(xué)生在畫圖過程中體會圖形中每個三角形之間的關(guān)系;或讓學(xué)生仔細(xì)觀察圖形,分析圖形,找出關(guān)系.

  結(jié)果:圖中存在這樣的三角形,其中一個是另一個通過旋轉(zhuǎn)得到的.

  整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的.

  整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.

  板書設(shè)計(jì):

  教學(xué)反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學(xué)直觀生動形象。學(xué)生一般都能在教師的指導(dǎo)下掌握。也在培養(yǎng)學(xué)生的空間想象能力。

關(guān)于八年級數(shù)學(xué)教案模板3

  一、學(xué)習(xí)目標(biāo):

  1、會推導(dǎo)兩數(shù)差的平方公式,會用式子表示及用文字語言敘述;

  2、會運(yùn)用兩數(shù)差的平方公式進(jìn)行計(jì)算。

  二、學(xué)習(xí)過程:

  請同學(xué)們快速閱讀課本第27—28頁的內(nèi)容,并完成下面的練習(xí)題:

 ?。ㄒ唬┨剿?/p>

  1、計(jì)算: (a - b) =

  方法一: 方法二:

  方法三:

  2、兩數(shù)差的平方用式子表示為_________________________;

  用文字語言敘述為___________________________ 。

  3、兩數(shù)差的平方公式結(jié)構(gòu)特征是什么?

 ?。ǘ┈F(xiàn)學(xué)現(xiàn)用

  利用兩數(shù)差的平方公式計(jì)算:

  1、(3 - a) 2、 (2a -1) 3、(3y-x)

  4、(2x – 4y) 5、( 3a - )

 ?。ㄈ┖献鞴リP(guān)

  靈活運(yùn)用兩數(shù)差的平方公式計(jì)算:

  1、(999) 2、( a – b – c )

  3、(a + 1) -(a-1)

  (四)達(dá)標(biāo)訓(xùn)練

  1、、選擇:下列各式中,與(a - 2b) 一定相等的是( )

  A、a -2ab + 4b B、a -4b

  C、a +4b D、 a - 4ab +4b

  2、填空:

  (1)9x + + 16y = (4y - 3x )

  (2) ( ) = m - 8m + 16

  2、計(jì)算:

  ( a - b) ( x -2y )

  3、有一邊長為a米的正方形空地,現(xiàn)準(zhǔn)備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計(jì)算出噴泉水池的面積嗎?

  (四)提升

  1、本節(jié)課你學(xué)到了什么?

  2、已知a – b = 1,a + b = 25,求ab 的值

關(guān)于八年級數(shù)學(xué)教案模板4

  知識目標(biāo):理解函數(shù)的概念,能準(zhǔn)確識別出函數(shù)關(guān)系中的自變量和函數(shù)

  能力目標(biāo):會用變化的量描述事物

  情感目標(biāo):回用運(yùn)動的觀點(diǎn)觀察事物,分析事物

  重點(diǎn):函數(shù)的概念

  難點(diǎn):函數(shù)的概念

  教學(xué)媒體:多媒體電腦,計(jì)算器

  教學(xué)說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會確定自變量的取值范圍

  教學(xué)設(shè)計(jì):

  引入:

  信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重?cái)?shù)值表,你能看出小明各周歲時體重是如何變化的嗎?

  新課:

  問題:(1)如圖是某日的氣溫變化圖。

  ① 這張圖告訴我們哪些信息?

 ?、?這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?

  (2)收音機(jī)上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標(biāo)刻的,下表中是一些對應(yīng)的數(shù):

 ?、?這表告訴我們哪些信息?

  ② 這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個表達(dá)式表示出來嗎?

  一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當(dāng)x=a時,y=b,那么b叫做當(dāng)自變量的值為a時的函數(shù)值。

  范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:

  (5) 長方形的寬一定時,其長與面積;

  (6) 等腰三角形的底邊長與面積;

  (7) 某人的年齡與身高;

  活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計(jì)算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系

  思考:自變量是否可以任意取值

  例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

  (1) 寫出表示y與x的函數(shù)關(guān)系式.

  (2) 指出自變量x的取值范圍.

  (3) 汽車行駛200km時,油箱中還有多少汽油?

  解:(1)y=50-0.1x

  (2)0500

  (3)x=200,y=30

  活動2:練習(xí)教材9頁練習(xí)

  小結(jié):(1)函數(shù)概念

  (2)自變量,函數(shù)值

  (3)自變量的取值范圍確定

  作業(yè):18頁:2,3,4題

關(guān)于八年級數(shù)學(xué)教案模板5

  數(shù)據(jù)的波動

  教學(xué)目標(biāo):

  1、經(jīng)歷數(shù)據(jù)離散程度的探索過程

  2、了解刻畫數(shù)據(jù)離散程度的三個量度極差、標(biāo)準(zhǔn)差和方差,能借助計(jì)算器求出相應(yīng)的數(shù)值。

  教學(xué)重點(diǎn):會計(jì)算某些數(shù)據(jù)的極差、標(biāo)準(zhǔn)差和方差。

  教學(xué)難點(diǎn):理解數(shù)據(jù)離散程度與三個差之間的關(guān)系。

  教學(xué)準(zhǔn)備:計(jì)算器,投影片等

  教學(xué)過程:

  一、創(chuàng)設(shè)情境

  1、投影課本P138引例。

  (通過對問題串的解決,使學(xué)生直觀地估計(jì)從甲、乙兩廠抽取的20只雞腿的平均質(zhì)量,同時讓學(xué)生初步體會平均水平相近時,兩者的`離散程度未必相同,從而順理成章地引入刻畫數(shù)據(jù)離散程度的一個量度極差)

  2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,極差是用來刻畫數(shù)據(jù)離散程度的一個統(tǒng)計(jì)量。

  二、活動與探究

  如果丙廠也參加了競爭,從該廠抽樣調(diào)查了20只雞腿,數(shù)據(jù)如圖(投影課本159頁圖)

  問題:1、丙廠這20只雞腿質(zhì)量的平均數(shù)和極差是多少?

  2、如何刻畫丙廠這20只雞腿質(zhì)量與其平均數(shù)的差距?分別求出甲、丙兩廠的20只雞腿質(zhì)量與對應(yīng)平均數(shù)的差距。

  3、在甲、丙兩廠中,你認(rèn)為哪個廠雞腿質(zhì)量更符合要求?為什么?

  (在上面的情境中,學(xué)生很容易比較甲、乙兩廠被抽取雞腿質(zhì)量的極差,即可得出結(jié)論。這里增加一個丙廠,其平均質(zhì)量和極差與甲廠相同,此時導(dǎo)致學(xué)生思想認(rèn)識上的矛盾,為引出另兩個刻畫數(shù)據(jù)離散程度的量度標(biāo)準(zhǔn)差和方差作鋪墊。

  三、講解概念:

  方差:各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2

  設(shè)有一組數(shù)據(jù):x1, x2, x3,,xn,其平均數(shù)為

  則s2= ,

  而s= 稱為該數(shù)據(jù)的標(biāo)準(zhǔn)差(既方差的算術(shù)平方根)

  從上面計(jì)算公式可以看出:一組數(shù)據(jù)的極差,方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。

  四、做一做

  你能用計(jì)算器計(jì)算上述甲、丙兩廠分別抽取的20只雞腿質(zhì)量的方差和標(biāo)準(zhǔn)差嗎?你認(rèn)為選哪個廠的雞腿規(guī)格更好一些?說說你是怎樣算的?

  (通過對此問題的解決,使學(xué)生回顧了用計(jì)算器求平均數(shù)的步驟,并自由探索求方差的詳細(xì)步驟)

  五、鞏固練習(xí):課本第172頁隨堂練習(xí)

  六、課堂小結(jié):

  1、怎樣刻畫一組數(shù)據(jù)的離散程度?

  2、怎樣求方差和標(biāo)準(zhǔn)差?

  七、布置作業(yè):習(xí)題5.5第1、2題。

關(guān)于八年級數(shù)學(xué)教案模板6

  課時目標(biāo)

  1.掌握分式、有理式的概念。

  2.掌握分式是否有意義、分式的值是否等于零的識別方法。

  教學(xué)重點(diǎn)

  正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。

  教學(xué)難點(diǎn):

  正確理解分式的意義,分式是否有意義的條件及分式的值為零的條件。

  教學(xué)時間:一課時。

  教學(xué)用具:投影儀等。

  教學(xué)過程:

  一.復(fù)習(xí)提問

  1.什么是整式?什么是單項(xiàng)式?什么是多項(xiàng)式?

  2.判斷下列各式中,哪些是整式?哪些不是整式?

 ?、伲玬2 ②1+x+y2- ③ ④

  ⑤ ⑥ ⑦

  二.新課講解:

  設(shè)問:不是整工式子中,和整式有什么區(qū)別?

  小結(jié):1.分式的概念:一般地,形如的式子叫做分式,其中A和B均為整式,B中含有字母。

  練習(xí):下列各式中,哪些是分式哪些不是?

 ?。?)、、(2)、(3)、(4)、(5)x2、(6)+4

  強(qiáng)調(diào):(6)+4帶有是無理式,不是整式,故不是分式。

  2.小結(jié):對整式、分式的正確區(qū)別:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必須含有字母,這是分式與整式的根本區(qū)別。

  練習(xí):課后練習(xí)P6練習(xí)1、2題

  設(shè)問:(讓學(xué)生看課本上P5“思考”部分,然后回答問題。)

  例題講解:課本P5例題1

  分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b(4)x-y。只要這引起分母不為零,分式便有意義。

 ?。ò鍟忸}過程。)

  3.小結(jié):分式是否有意義的識別方法:當(dāng)分式的分母為零時,分式無意義;當(dāng)分式的分母不等于零時,分式有意義。

  增加例題:當(dāng)x取什么值時,分式有意義?

  解:由分母x2-4=0,得x=±2。

  ∴ 當(dāng)x≠±2時,分式有意義。

  設(shè)問:什么時候分式的值為零呢?

  例:

  解:當(dāng) ① 分式的值為零

關(guān)于八年級數(shù)學(xué)教案模板6篇(八年級數(shù)學(xué)教案模板范文)相關(guān)文章:

八年級數(shù)學(xué)教案7篇

關(guān)于八年級數(shù)學(xué)教案范文3篇(初中數(shù)學(xué)八年級教案設(shè)計(jì))

關(guān)于八年級數(shù)學(xué)教案范文4篇(八年級數(shù)學(xué)優(yōu)秀教案)

八年級數(shù)學(xué)教案范文4篇 初中數(shù)學(xué)八年級教案設(shè)計(jì)

實(shí)用的八年級數(shù)學(xué)教案3篇 八年級數(shù)學(xué)教案模板

有關(guān)八年級數(shù)學(xué)教案范文7篇 初中8年級數(shù)學(xué)教案

有關(guān)八年級數(shù)學(xué)教案3篇 初中8年級數(shù)學(xué)教案

有關(guān)八年級數(shù)學(xué)教案3篇

關(guān)于八年級數(shù)學(xué)教案3篇 初中數(shù)學(xué)八年級教案設(shè)計(jì)

有關(guān)八年級數(shù)學(xué)教案范文5篇 八年級數(shù)學(xué)教學(xué)方案