亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

初中數(shù)學知識點10篇

時間:2023-10-05 21:49:00 綜合范文

  下面是范文網(wǎng)小編收集的初中數(shù)學知識點10篇,供大家參考。

初中數(shù)學知識點10篇

初中數(shù)學知識點1

  知識要領:非負數(shù),顧名思義,就是不是負數(shù)的數(shù),也就是零和正實數(shù)。例如:0、3.4、9/10、π(圓周率)。

  非負數(shù)

  非負數(shù)大于或等于0。

  非負數(shù)中含有有理數(shù)和無理數(shù)。

  非負數(shù)的和或積仍是非負數(shù)。

  非負數(shù)的和為零,則每個非負數(shù)必等于零。

  非負數(shù)的積為零,則至少有一個非負數(shù)為零。

  非負數(shù)的絕對值等于本身。

  常見的'非負數(shù)

  實數(shù)的絕對值、實數(shù)的偶次冪、算術根等都是常見的非負數(shù)。

  常見表現(xiàn)形式

  非負數(shù)的準確數(shù)學表達是a≥0、│a│、a^2n是常見的非負數(shù)。

  知識歸納:任何一個非負數(shù)乘以-1都會得到一個非正數(shù)。

初中數(shù)學知識點2

  一、平移變換:

  1。概念:在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。

  2。性質:(1)平移前后圖形全等;

 ?。?)對應點連線平行或在同一直線上且相等。

  3。平移的作圖步驟和方法:

  (1)分清題目要求,確定平移的方向和平移的距離;

 ?。?)分析所作的圖形,找出構成圖形的關健點;

 ?。?)沿一定的方向,按一定的距離平移各個關健點;

 ?。?)連接所作的各個關鍵點,并標上相應的字母;

 ?。?)寫出結論。

  二、旋轉變換:

  1。概念:在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。

  說明:

 ?。?)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;

 ?。?)旋轉過程中旋轉中心始終保持不動。

  (3)旋轉過程中旋轉的方向是相同的。

 ?。?)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的。⑤旋轉不改變圖形的大小和形狀。

  2。性質:

 ?。?)對應點到旋轉中心的距離相等;

 ?。?)對應點與旋轉中心所連線段的夾角等于旋轉角;

 ?。?)旋轉前、后的圖形全等。

  3。旋轉作圖的`步驟和方法:

  (1)確定旋轉中心及旋轉方向、旋轉角;

 ?。?)找出圖形的關鍵點;

  (3)將圖形的關鍵點和旋轉中心連接起來,然后按旋轉方向分別將它們旋轉一個旋轉角度數(shù),得到這些關鍵點的對應點;

 ?。?)按原圖形順次連接這些對應點,所得到的圖形就是旋轉后的圖形。

  說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。

  常見考法

 ?。?)把平移旋轉結合起來證明三角形全等;

 ?。?)利用平移變換與旋轉變換的性質,設計一些題目。

  誤區(qū)提醒

 ?。?)弄反了坐標平移的上加下減,左減右加的規(guī)律;

 ?。?)平移與旋轉的性質沒有掌握。

初中數(shù)學知識點3

  圓的知識:平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。

  圓心:

  (1)如定義(1)中,該定點為圓心

  (2)如定義(2)中,繞的那一端的端點為圓心。

  (3)圓任意兩條對稱軸的交點為圓心。

  (4) 垂直于圓內任意一條弦且兩個端點在圓上的線段的二分點為圓心。

  注:圓心一般用字母O表示

  直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

  半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。

  圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。

  圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。

  圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。

  圓的周長與直徑的比值叫做圓周率。

  圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計算時,通常取它的近似值,π≈3.14。

  直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。

  圓的面積公式:圓所占平面的.大小叫做圓的面積。πr,用字母S表示。

  一條弧所對的圓周角是圓心角的二分之一。

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。

  在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。

初中數(shù)學知識點4

  冪函數(shù)的性質:

  對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當指數(shù)n是負整數(shù)時,設a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負數(shù),那么我們就可以知道:

  排除了為0與負數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

  排除了為0這種可能,即對于x<0x="">0的所有實數(shù),q不能是偶數(shù);

  排除了為負數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負數(shù)。

  總結起來,就可以得到當a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

  如果a為負數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

  在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

  在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

  而只有a為正數(shù),0才進入函數(shù)的`值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。

  可以看到:

 ?。?)所有的圖形都通過(1,1)這點。

  (2)當a大于0時,冪函數(shù)為單調遞增的,而a小于0時,冪函數(shù)為單調遞減函數(shù)。

 ?。?)當a大于1時,冪函數(shù)圖形下凹;當a小于1大于0時,冪函數(shù)圖形上凸。

 ?。?)當a小于0時,a越小,圖形傾斜程度越大。

  (5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

  解題方法:換元法

  解數(shù)學題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法。換元的實質是轉化,關鍵是構造元和設元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、復雜問題簡單化,變得容易處理。

  換元法又稱輔助元素法、變量代換法。通過引進新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結論聯(lián)系起來?;蛘咦?yōu)槭煜さ男问?,把復雜的計算和推證簡化。

  它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應用。

  練習題:

  1、若f(x)=x2—x+b,且f(log2a)=b,log2[f(a)]=2(a≠1)。

 ?。?)求f(log2x)的最小值及對應的x值;

 ?。?)x取何值時,f(log2x)>f(1)且log2[f(x)]

  2、已知函數(shù)f(x)=3x+k(k為常數(shù)),A(—2k,2)是函數(shù)y=f—1(x)圖象上的點。

 ?。?)求實數(shù)k的值及函數(shù)f—1(x)的解析式;

 ?。?)將y=f—1(x)的圖象按向量a=(3,0)平移,得到函數(shù)y=g(x)的圖象,若2f—1(x+—3)—g(x)≥1恒成立,試求實數(shù)m的取值范圍。

初中數(shù)學知識點5

  最簡單的解釋就是,不等式是指用不等號可以將兩個解析式連接起來所成的式子。

  1.概念:在一個式子中的數(shù)的關系,不全是等號,含不等符號的式子,那它就是一個不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。

  2、分類:不等式分為嚴格不等式與非嚴格不等式。

  一般地,用純粹的大于號、小于號“>”“<”連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)

  “≥”(大于等于符號)“≤”(小于等于符號)連接的`不等式稱為非嚴格不等式,或稱廣義不等式。

  通常不等式中的數(shù)是實數(shù),字母也代表實數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號也可以為<,≥,> 中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。

  我們大家在判定不等式時要記得,在一個式子中的數(shù)的關系,不全是等號,含不等符號的式子,那它就是一個不等式。

初中數(shù)學知識點6

  不等式的證明

  1、比較法

  包括比差和比商兩種方法。

  2、綜合法

  證明不等式時,從命題的已知條件出發(fā),利用公理、定理、法則等,逐步推導出要證明的命題的方法稱為綜合法,綜合法又叫順推證法或因導果法。

  3、分析法

  證明不等式時,從待證命題出發(fā),分析使其成立的充分條件,利用已知的一些基本原理,逐步探索,最后將命題成立的條件歸結為一個已經(jīng)證明過的定理、簡單事實或題設的條件,這種證明的方法稱為分析法,它是執(zhí)果索因的方法。

  4、放縮法

  證明不等式時,有時根據(jù)需要把需證明的不等式的值適當放大或縮小,使其化繁為簡,化難為易,達到證明的目的,這種方法稱為放縮法。

  5、數(shù)學歸納法

  用數(shù)學歸納法證明不等式,要注意兩步一結論。

  在證明第二步時,一般多用到比較法、放縮法和分析法。

  6、反證法

  證明不等式時,首先假設要證明的命題的反面成立,把它作為條件和其他條件結合在一起,利用已知定義、定理、公理等基本原理逐步推證出一個與命題的條件或已證明的定理或公認的簡單事實相矛盾的結論,以此說明原假設的結論不成立,從而肯定原命題的結論成立的方法稱為反證法。

  上面的六大證明方法,絕對有一項是適合您的。

  初中數(shù)學知識點總結:平面直角坐標系

  下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。

  平面直角坐標系

  平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。

  水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

  平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

  三個規(guī)定:

 ?、僬较虻囊?guī)定橫軸取向右為正方向,縱軸取向上為正方向

 ?、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

 ?、巯笙薜囊?guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

  相信上面對平面直角坐標系知識的講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們都能考試成功。

  初中數(shù)學知識點:平面直角坐標系的構成

  對于平面直角坐標系的'構成內容,下面我們一起來學習哦。

  平面直角坐標系的構成

  在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

  通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。

  初中數(shù)學知識點:點的坐標的性質

  下面是對數(shù)學中點的坐標的性質知識學習,同學們認真看看哦。

  點的坐標的性質

  建立了平面直角坐標系后,對于坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

  對于平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數(shù)對(a,b)叫做點C的坐標。

  一個點在不同的象限或坐標軸上,點的坐標不一樣。

  希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優(yōu)異成績的。

  初中數(shù)學知識點:因式分解的一般步驟

  關于數(shù)學中因式分解的一般步驟內容學習,我們做下面的知識講解。

  因式分解的一般步驟

  如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

  通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

  注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內因式分解,應該是指在有理數(shù)范圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

  相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經(jīng)能很好的掌握了吧,希望同學們會考出好成績。

  初中數(shù)學知識點:因式分解

  下面是對數(shù)學中因式分解內容的知識講解,希望同學們認真學習。

  因式分解

  因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

  因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④

  因式分解與整式乘法的關系:m(a+b+c)

  公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

  公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

  提取公因式步驟:

 ?、俅_定公因式。②確定商式③公因式與商式寫成積的形式。

  分解因式注意;

 ?、俨粶蕘G字母

 ?、诓粶蕘G常數(shù)項注意查項數(shù)

 ?、垭p重括號化成單括號

  ④結果按數(shù)單字母單項式多項式順序排列

 ?、菹嗤蚴綄懗蓛绲男问?/p>

 ?、奘醉椮撎柗爬ㄌ柾?/p>

 ?、呃ㄌ杻韧愴椇喜?。

初中數(shù)學知識點7

  定義:使一元一次方程左右兩邊相等的未知數(shù)的值叫做一元一次方程的解。

  把方程的解代入原方程,等式左右兩邊相等。

  解一元一次方程:

  1、解一元一次方程的一般步驟

  去分母、去括號、移項、合并同類項、系數(shù)化為1,這僅是解一元一次方程的一般步驟,針對方程的特點,靈活應用,各種步驟都是為使方程逐漸向x=a形式轉化。

  2、解一元一次方程時先觀察方程的形式和特點,若有分母一般先去分母;若既有分母又有括號,且括號外的項在乘括號內各項后能消去分母,就先去括號。

  3、在解類似于“ax+bx=c”的方程時,將方程左邊,按合并同類項的方法并為一項即(a+b)x=c。

  使方程逐漸轉化為ax=b的最簡形式體現(xiàn)化歸思想。

  將ax=b系數(shù)化為1時,要準確計算,一弄清求x時,方程兩邊除以的是a還是b,尤其a為分數(shù)時;二要準確判斷符號,a、b同號x為正,a、b異號x為負。

  一元一次方程的應用

  1、一元一次方程解應用題的類型

 ?。?)探索規(guī)律型問題;

 ?。?)數(shù)字問題;

 ?。?)銷售問題(利潤=售價﹣進價,利潤率=利潤進價×100%);

 ?。?)工程問題(①工作量=人均效率×人數(shù)×時間;②如果一件工作分幾個階段完成,那么各階段的工作量的和=工作總量);

  (5)行程問題(路程=速度×時間);

 ?。?)等值變換問題;

 ?。?)和,差,倍,分問題;

 ?。?)分配問題;

 ?。?)比賽積分問題;

 ?。?0)水流航行問題(順水速度=靜水速度+水流速度;逆水速度=靜水速度﹣水流速度)。

  2、利用方程解決實際問題的基本思路:

  首先審題找出題中的未知量和所有的`已知量,直接設要求的未知量或間接設一關鍵的未知量為x,然后用含x的式子表示相關的量,找出之間的相等關系列方程、求解、作答,即設、列、解、答。

  列一元一次方程解應用題的五個步驟

 ?。?)審:仔細審題,確定已知量和未知量,找出它們之間的等量關系。

 ?。?)設:設未知數(shù)(x),根據(jù)實際情況,可設直接未知數(shù)(問什么設什么),也可設間接未知數(shù)。

 ?。?)列:根據(jù)等量關系列出方程。

 ?。?)解:解方程,求得未知數(shù)的值。

 ?。?)答:檢驗未知數(shù)的值是否正確,是否符合題意,完整地寫出答句。

初中數(shù)學知識點8

  一、數(shù)與代數(shù)

  a、數(shù)與式:

  1、有理數(shù):

 ?、僬麛?shù)→正整數(shù)/0/負整數(shù)

  ②分數(shù)→正分數(shù)/負分數(shù)

  數(shù)軸:

 ?、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。

  ②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。

 ?、廴绻麅蓚€數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側,并且與原點距離相等。

 ?、軘?shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。

  絕對值:

 ?、僭跀?shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。

 ?、谡龜?shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。

  有理數(shù)的運算:加法:

 ?、偻栂嗉?,取相同的符號,把絕對值相加。

 ?、诋愄栂嗉?,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

 ?、垡粋€數(shù)與0相加不變。

  減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  乘法:

 ?、賰蓴?shù)相乘,同號得正,異號得負,絕對值相乘。

 ?、谌魏螖?shù)與0相乘得0。

 ?、鄢朔e為1的.兩個有理數(shù)互為倒數(shù)。

  除法:

  ①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。

 ?、?不能作除數(shù)。

  乘方:求n個相同因數(shù)a的積的運算叫做乘方,乘方的結果叫冪,a叫底數(shù),n叫次數(shù)。

  混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。

  2、實數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

  平方根:

 ?、偃绻粋€正數(shù)x的平方等于a,那么這個正數(shù)x就叫做a的算術平方根。

 ?、谌绻粋€數(shù)x的平方等于a,那么這個數(shù)x就叫做a的平方根。

 ?、垡粋€正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。

 ?、芮笠粋€數(shù)a的平方根運算,叫做開平方,其中a叫做被開方數(shù)。

  立方根:

 ?、偃绻粋€數(shù)x的立方等于a,那么這個數(shù)x就叫做a的立方根。

  ②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。

 ?、矍笠粋€數(shù)a的立方根的運算叫開立方,其中a叫做被開方數(shù)。

  實數(shù):

 ?、賹崝?shù)分有理數(shù)和無理數(shù)。

 ?、谠趯崝?shù)范圍內,相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內的相反數(shù),倒數(shù),絕對值的意義完全一樣。

 ?、勖恳粋€實數(shù)都可以在數(shù)軸上的一個點來表示。

  3、代數(shù)式

  代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。

  合并同類項:

 ?、偎帜赶嗤⑶蚁嗤帜傅闹笖?shù)也相同的項,叫做同類項。

 ?、诎淹愴椇喜⒊梢豁椌徒凶龊喜⑼愴?。

  ③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。

  4、整式與分式

  整式:

  ①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。

 ?、谝粋€單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。

 ?、垡粋€多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。

  整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。

  冪的運算:am+an=a(m+n)

  (am)n=amn

  (a/b)n=an/bn 除法一樣。

  整式的乘法:

  ①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

 ?、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。

  ③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

  公式兩條:平方差公式/完全平方公式

  整式的除法:

 ?、賳雾検较喑严禂?shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。

 ?、诙囗検匠詥雾検剑劝堰@個多項式的每一項分別除以單項式,再把所得的商相加。

  分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

  方法:提公因式法、運用公式法、分組分解法、十字相乘法。

  分式:

 ?、僬絘除以整式b,如果除式b中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。

 ?、诜质降姆肿优c分母同乘以或除以同一個不等于0的整式,分式的值不變。

  初中數(shù)學知識點:直線的位置與常數(shù)的關系

 ?、賙>0則直線的傾斜角為銳角

 ?、趉<0則直線的傾斜角為鈍角

 ?、蹐D像越陡,|k|越大

 ?、躡>0直線與y軸的交點在x軸的上方

 ?、輇<0直線與y軸的交點在x軸的下方

初中數(shù)學知識點9

  1、正數(shù)和負數(shù)的有關概念

  (1)正數(shù):比0大的數(shù)叫做正數(shù);

  負數(shù):比0小的數(shù)叫做負數(shù);

  0既不是正數(shù),也不是負數(shù)。

  (2)正數(shù)和負數(shù)表示相反意義的量。

  2、有理數(shù)的概念及分類

  3、有關數(shù)軸

  (1)數(shù)軸的三要素:原點、正方向、單位長度。數(shù)軸是一條直線。

  (2)所有有理數(shù)都可以用數(shù)軸上的點來表示,但數(shù)軸上的點不一定都是有理數(shù)。

  (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點在原點的右側,表示負數(shù)的點在原點的左側。

  (2)相反數(shù):符號不同、絕對值相等的兩個數(shù)互為相反數(shù)。

  若a、b互為相反數(shù),則a+b=0;

  相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負數(shù),負數(shù)的相反數(shù)是正數(shù)。

  (3)絕對值最小的數(shù)是0;絕對值是本身的數(shù)是非負數(shù)。

  4、任何數(shù)的絕對值是非負數(shù)。

  最小的正整數(shù)是1,最大的負整數(shù)是-1。

  5、利用絕對值比較大小

  兩個正數(shù)比較:絕對值大的那個數(shù)大;

  兩個負數(shù)比較:先算出它們的絕對值,絕對值大的反而小。

  6、有理數(shù)加法

  (1)符號相同的兩數(shù)相加:和的符號與兩個加數(shù)的'符號一致,和的絕對值等于兩個加數(shù)絕對值之和.

  (2)符號相反的兩數(shù)相加:當兩個加數(shù)絕對值不等時,和的符號與絕對值較大的加數(shù)的符號相同,和的絕對值等于加數(shù)中較大的絕對值減去較小的絕對值;當兩個加數(shù)絕對值相等時,兩個加數(shù)互為相反數(shù),和為零.

  (3)一個數(shù)同零相加,仍得這個數(shù).

  加法的交換律:a+b=b+a

  加法的結合律:(a+b)+c=a+(b+c)

  7、有理數(shù)減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。

  8、在把有理數(shù)加減混合運算統(tǒng)一為最簡的形式,負數(shù)前面的加號可以省略不寫.

  例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”

  9、有理數(shù)的乘法

  兩個數(shù)相乘,同號得正,異號得負,再把絕對值相乘;任何數(shù)與0相乘都得0。

  第一步:確定積的符號 第二步:絕對值相乘

  10、乘積的符號的確定

  幾個有理數(shù)相乘,因數(shù)都不為 0 時,積的符號由負因數(shù)的個數(shù)確定:當負因數(shù)有奇數(shù)個時,積為負;

  當負因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。

  11、倒數(shù):乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。

  正數(shù)的倒數(shù)是正數(shù),負數(shù)的倒數(shù)是負數(shù)。(互為倒數(shù)的兩個數(shù)符號一定相同)

  倒數(shù)是本身的只有1和-1。

初中數(shù)學知識點10

  整式及其運算:

  【考點歸納】

  1.代數(shù)式:用運算符號(加、減、乘、除、乘方、開方)把()或表示()連接而成的式子叫做代數(shù)式.

  2.代數(shù)式的值:用()代替代數(shù)式里的字母,按照代數(shù)式里的運算關系,計算后所得的()叫做代數(shù)式的值.

  3.整式

  (1)單項式:由數(shù)與字母的()組成的代數(shù)式叫做單項式(單獨一個數(shù)或()也是單項式).單項式中的()叫做這個單項式的系數(shù);單項式中的所有字母的()叫做這個單項式的.次數(shù).

  (2)多項式:幾個單項式的()叫做多項式.在多項式中,每個單項式叫()做多項式的(),其中次數(shù)最高的項的()叫做這個多項式的次數(shù).不含字母的項叫做.

  (3)整式:()與()統(tǒng)稱整式.

  4.同類項:在一個多項式中,所含()相同并且相同字母的()也分別相等的項叫做同類項.合并同類項的法則是()。

  20xx人教版七年級數(shù)學有理數(shù)知識點

  1.有理數(shù):

  (1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負整數(shù)統(tǒng)稱整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱分數(shù);整數(shù)和分數(shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負數(shù);-a不一定是負數(shù),+a也不一定是正數(shù);不是有理數(shù);

  (2)有理數(shù)的分類:①②

  (3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;

  (4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負數(shù);

  a≥0a是正數(shù)或0a是非負數(shù);a≤0a是負數(shù)或0a是非正數(shù).

  2.數(shù)軸:數(shù)軸是規(guī)定了原點、正方向、單位長度的一條直線.

  7.整式的除法

 ?、艈雾検匠詥雾検降姆▌t:把()、()分別相除后,作為商的因式;對于只在被除武里含有的字母,則連同它的指數(shù)一起作為商的一個因式.

  ⑵多項式除以單項式的法則:先把這個多項式的每一項分別除以(),再把所得的商().

初中數(shù)學知識點10篇相關文章:

初中數(shù)學校本研修計劃6篇(初中數(shù)學校本研修課題有哪些)

高考數(shù)學備考知識點總結精華9篇

初中數(shù)學人教版教學設計匯總6篇

初中數(shù)學教學工作總結12篇

初中數(shù)學教學個人工作總結6篇 初中數(shù)學教學個人工作計劃

初中數(shù)學教學工作總結11篇(教學總結初中數(shù)學)

初中數(shù)學知識點總結7篇

初中數(shù)學教學心得【9篇】

關于初中數(shù)學教學工作總結3篇(初中數(shù)學教學工作總結個人)

初中數(shù)學新課標學習的心得體會7篇(新課程標準初中數(shù)學心得體會)