亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

《勾股定理》說課稿12篇

時(shí)間:2024-05-05 20:01:00 說課稿

  下面是范文網(wǎng)小編整理的《勾股定理》說課稿12篇,以供參考。

《勾股定理》說課稿12篇

《勾股定理》說課稿1

  尊敬的各位評委:

  您們好!我來自明光市張八嶺中學(xué)。今天我說課的課題是《勾股定理》。本課選自九年義務(wù)教育滬科版八年級下冊初中數(shù)學(xué)第十九章第一節(jié)的第一課時(shí)。

  下面我從教學(xué)背景分析、教材處理、教學(xué)策略、教學(xué)流程方面對本課的設(shè)計(jì)進(jìn)行說明。

  一、教學(xué)背景分析

  1、教材分析

  本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過一枚1955年由希臘發(fā)行的郵票上圖案的故事,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),同時(shí)在實(shí)際生活中用途也很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。

  2、學(xué)情分析

  學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些知識,如三角形的三邊不等關(guān)系,三角形全等的判定等。也學(xué)過不少利用圖形面積來探求數(shù)式運(yùn)算規(guī)律的例子,如探求乘法公式、單項(xiàng)式乘多項(xiàng)式法則、多項(xiàng)式乘多項(xiàng)式法則等。在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學(xué)生的知識形成知識鏈,讓學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。

  3、教學(xué)目標(biāo):

  根據(jù)八年級學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):

  知識與技能:了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會用面積法證明勾股定理;培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識和能力.

  過程與方法:在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。

  情感態(tài)度價(jià)值觀:感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗(yàn)合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。

  4、教學(xué)重點(diǎn)、難點(diǎn)

  通過研究分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實(shí)踐中有著廣泛應(yīng)用。因此我確定本課的教學(xué)重點(diǎn)為勾股定理的證明與運(yùn)用,教學(xué)難點(diǎn)為用面積法證明勾股定理

  二、教材處理

  根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過程中,我先以數(shù)學(xué)史中的一個(gè)有趣的故事來激發(fā)學(xué)生學(xué)習(xí)興趣,運(yùn)用直觀教具、多媒體等手段,調(diào)動學(xué)生學(xué)習(xí)積極性,并開展以探究活動為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問題,分析問題,進(jìn)而解決問題,以達(dá)到突出重點(diǎn),攻破難點(diǎn)的目的。

  三、教學(xué)策略

  1、教法

  “教必有法,而教無定法”,只有方法恰當(dāng),才會有效。根據(jù)本課內(nèi)容特點(diǎn)和八年級學(xué)生思維活動特點(diǎn),我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。

  2、學(xué)法

  “授人以魚,不如授人以漁”,通過設(shè)計(jì)問題序列,引導(dǎo)學(xué)生主動探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

  3、教學(xué)手段

  充分利用多媒體,提高教學(xué)效率,增大教學(xué)容量;通過多媒體演示,激發(fā)學(xué)生學(xué)習(xí)興趣,啟迪學(xué)生思維的發(fā)展;通過直觀教具,進(jìn)行動手操作,調(diào)動學(xué)生學(xué)習(xí)的積極性,培養(yǎng)學(xué)生思維的廣闊性。

  4、教學(xué)模式

  根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識,提高素質(zhì)能力。

  四、教學(xué)流程

  (一)創(chuàng)設(shè)情境,引入新課(時(shí)長2~3分鐘)

  我利用多媒體課件,給學(xué)生展示一枚1955年由希臘發(fā)行的郵票,并問學(xué)生是否想聽這枚郵票背后的故事?

  在20xx多年前,古希臘有一位著名的數(shù)學(xué)家——畢達(dá)哥拉斯,有次參加一位政要人物邀請的餐會,這位主人的宮殿般豪華的餐廳鋪著正方形的美麗的大理石地磚,由于大餐遲遲不上桌,這些饑腸轆轆的貴賓頗有怨言,但這位善于觀察和理解的數(shù)學(xué)家卻凝視腳下這些排列規(guī)則,美麗的方形瓷磚,畢達(dá)哥拉斯不只是欣賞瓷磚的美麗,而是想到它們和“數(shù)”之間的關(guān)系,于是他拿了畫筆并且蹲在地板上,選了一塊瓷磚以它的對角線為邊畫了一個(gè)大正方形,同學(xué)們,你們知道他發(fā)現(xiàn)了什么嗎?

  對學(xué)生的回答進(jìn)行引導(dǎo),梳理,總結(jié),可以得到有關(guān)三個(gè)正方形面積的結(jié)論。進(jìn)而引入本節(jié)課的標(biāo)題:19.1 勾股定理(板書)

 ?。ㄒ孕」适录ぐl(fā)學(xué)生的興趣,隨后以開放式的問題形式,讓學(xué)生觀察猜想。本環(huán)節(jié)體現(xiàn)了人文關(guān)懷,并兼顧了教材中的探究,為下一步勾股定理的證明埋下伏筆。)

 ?。ǘ┮龑?dǎo)學(xué)生,探究新知(教學(xué)時(shí)長15~20分鐘)

  1、初步感知定理:

 ?。?)用什么方法來探求:勾股定理即直角三角形三邊數(shù)量關(guān)系呢?

  回憶我們曾經(jīng)利用圖形面積探索過數(shù)學(xué)公式,大家還記得在哪用過嗎?

 ?。▽W(xué)生討論)

  課件展示:平方差公式、完全平方公式、單項(xiàng)式乘多項(xiàng)式、多項(xiàng)式乘多項(xiàng)式的引出.

  今天,讓我們試一試通過計(jì)算圖形的面積能不能得到直角三角形三邊數(shù)量關(guān)系. (從學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn)出發(fā),將探求邊長之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學(xué)生覺得解決今天問題的方法并不陌生,增強(qiáng)探索問題的信心.)

 ?。?)展示課本上圖19—1和圖19—2(1)的圖形,觀察圖中三個(gè)正方形有什么關(guān)系?

  讓學(xué)生通過觀察,計(jì)算出三個(gè)正方形的面積可以發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時(shí),則AB。

 ?。ㄟ@樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。)

 ?。?)緊接著讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出圖19.2(2)(一般直角三角形)。學(xué)生可以同樣求出兩個(gè)小正方形面積,只是求大正方形的面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。

  給出書中的定理(板書)并用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進(jìn)而給出字母表達(dá)式.

  通過學(xué)生的動手操作、合作交流,來獲取知識,這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過程,提高學(xué)生的分析問題和解決問題的能力。

  2、證明結(jié)論(教學(xué)時(shí)長8~10分鐘):

  出示書中圖19—3,與學(xué)生共同分析證明并板書過程。通過給出定理的證明過程讓學(xué)生體會到數(shù)學(xué)知識從特殊性到一般性,并對一般性結(jié)論進(jìn)行論證的嚴(yán)謹(jǐn)性。

  3、勾股定理簡介:(教學(xué)時(shí)長1~2分鐘)

  借助多媒體課件,通過介紹古代在勾股定理研究方面取得的成就,感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體會古人偉大的智慧。

 ?。ㄈ┓答佊?xùn)練,鞏固新知(教學(xué)時(shí)長6~8分鐘)

  讓學(xué)生完成兩項(xiàng)任務(wù):

  任務(wù)一:教材練習(xí)第一題;

  任務(wù)二:1,Rt?ABC中,c為斜邊,a=3,b=4.,則c=?

  2,?ABC中c為最長邊,a=3,b=4,則c=?

  任務(wù)一和任務(wù)二中第一題都是基礎(chǔ)題,對于任務(wù)二中第二題是提高題,對于做錯(cuò)的學(xué)生進(jìn)行引導(dǎo)讓其思考,再告知錯(cuò)誤的原因。通過練習(xí),讓學(xué)生更好的體會到,勾股定理揭示的是直角三角形三邊之間的數(shù)量關(guān)系,讓學(xué)生能夠更好的將數(shù)與形緊密聯(lián)系起來進(jìn)行思考。

  (四)歸納小結(jié),深化新知(教學(xué)時(shí)長1~2分鐘)

  本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問題是什么???

  通過小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識成為體系。

 ?。ㄎ澹┎贾米鳂I(yè),拓展新知(教學(xué)時(shí)長1~2分鐘)

  讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。

  (六)板書設(shè)計(jì),明確新知

  本節(jié)課的板書設(shè)計(jì),它分為三塊:一塊是復(fù)習(xí)引入,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識服務(wù)。

  以上內(nèi)容,我僅從教學(xué)背景分析、教材處理、教學(xué)策略、教學(xué)流程方面說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導(dǎo)對本次說課提出寶貴的意見,謝謝!

《勾股定理》說課稿2

  一、教材分析

 ?。ㄒ唬┙滩牡匚慌c作用

  勾股定理它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。

  (二)教學(xué)目標(biāo)知識與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡單實(shí)際問題。過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。情感態(tài)度與價(jià)值觀:激發(fā)愛國熱情,體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

 ?。ㄈ┙虒W(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來解決一些簡單的實(shí)際問題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析:

  學(xué)情分析:七年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力。他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強(qiáng)。

  教法分析:結(jié)合七年級學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、教學(xué)過程設(shè)計(jì)

  1、創(chuàng)設(shè)情境,提出問題

  2、實(shí)驗(yàn)操作,模型構(gòu)建

  3、回歸生活,應(yīng)用新知

  4、知識拓展,鞏固深化

  5、感悟收獲,布置作業(yè)

 ?。ㄒ唬﹦?chuàng)設(shè)情境提出問題

  (1)圖片欣賞:勾股定理數(shù)形圖xxxx年希臘發(fā)行。美麗的勾股樹20xx年國際數(shù)學(xué)的一枚紀(jì)念郵票。

  設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值。

  (2)某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。

 ?。ǘ?shí)驗(yàn)操作模型構(gòu)建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補(bǔ))

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高。

  通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理。

  設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊——一般的認(rèn)知規(guī)律。

 ?。ㄈ┗貧w生活應(yīng)用新知

  讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心。

 ?。ㄋ模┲R拓展鞏固深化

  基礎(chǔ)題,情境題,探索題。

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識的運(yùn)用得到升華。

  基礎(chǔ)題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基。通過學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維。

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯(cuò)了。你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題:做一個(gè)長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。

  設(shè)計(jì)意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

  (五)感悟收獲布置作業(yè):這節(jié)課你的收獲是什么?

  作業(yè):

  1、課本習(xí)題2、1

  2、搜集有關(guān)勾股定理證明的資料。

  板書設(shè)計(jì)

  探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2、b2、c2。

  設(shè)計(jì)說明:

  1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法。

  2、讓學(xué)生人人參與,注重對學(xué)生活動的評價(jià),一是學(xué)生在活動中的投入程度;二是學(xué)生在活動中表現(xiàn)出來的思維水平、表達(dá)水平。

《勾股定理》說課稿3

  課題:“勾股定理”第一課時(shí)

  內(nèi)容:教材分析、教學(xué)過程設(shè)計(jì)、設(shè)計(jì)說明

  一、教材分析

 ?。ㄒ唬┙滩乃幍牡匚?/p>

  這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書八年級第一章第一節(jié)探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。

 ?。ǘ└鶕?jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:

  1、能說出勾股定理的內(nèi)容。

  2、會初步運(yùn)用勾股定理進(jìn)行簡單的計(jì)算和實(shí)際運(yùn)用。

  3、在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和特殊到一般的思想方法。

  4、通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵學(xué)生發(fā)奮學(xué)習(xí)。

 ?。ㄈ┍菊n的教學(xué)重點(diǎn):探索勾股定理

  本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計(jì)算。

  二、教法與學(xué)法分析:

  教法分析:針對初二年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問題解決—課堂小結(jié)—布置作業(yè)六部分。

  學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。

  三、教學(xué)過程設(shè)計(jì)

 ?。ㄒ唬┨岢鰡栴}:

  首先創(chuàng)設(shè)這樣一個(gè)問題情境:某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?問題設(shè)計(jì)具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問題。學(xué)生會感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實(shí)際問題為切入點(diǎn)引入新課,不僅自然,而且反映了數(shù)學(xué)來源于實(shí)際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識的基本觀點(diǎn),同時(shí)也體現(xiàn)了知識的發(fā)生過程,而且解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程。

 ?。ǘ?shí)驗(yàn)操作:

  1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問題,讓學(xué)生計(jì)算正方形A,B,C的面積,學(xué)生可能有不同的方法,不管是通過直接數(shù)小方格的個(gè)數(shù),還是將C劃分為4個(gè)全等的等腰直角三角形來求等等,各種方法都應(yīng)予于肯定,并鼓勵學(xué)生用語言進(jìn)行表達(dá),引導(dǎo)學(xué)生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學(xué)生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。

  2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計(jì)算正方形的面積,但正方形C的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對于一般的以整數(shù)為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計(jì)不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會到觀察、猜想、歸納的思想,也讓學(xué)生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學(xué)習(xí)及有幫助。

  3、給出一個(gè)邊長為0.5,1.2,1.3,這種含小數(shù)的直角三角形,讓學(xué)生計(jì)算是否也滿足這個(gè)結(jié)論,設(shè)計(jì)的目的是讓學(xué)生體會到結(jié)論更具有一般性。

 ?。ㄈw納驗(yàn)證:

  1、歸納通過對邊長為整數(shù)的等腰直角三角形到一般直角三角形再到邊長含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語言進(jìn)行抽象、概括的能力是有益的,同時(shí)發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個(gè)結(jié)論要好的多。

  2、驗(yàn)證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個(gè)直角三角形,通過測量、計(jì)算來驗(yàn)證結(jié)論的正確性。這一過程有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號語言表示,因?yàn)閷⑽淖终Z言轉(zhuǎn)化為數(shù)學(xué)語言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對勾股定理的研究,對學(xué)生進(jìn)行愛國主義教育。

 ?。ㄋ模﹩栴}解決:

  讓學(xué)生解決開頭的實(shí)際問題,前后呼應(yīng),學(xué)生從中能體會到成功的喜悅。完成課本“想一想”進(jìn)一步體會勾股定理在實(shí)際生活中的應(yīng)用,數(shù)學(xué)是與實(shí)際生活緊密相連的。

 ?。ㄎ澹┱n堂小結(jié):

  主要通過學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結(jié),后由教師總結(jié)。

  (六)布置作業(yè):

  課本P6習(xí)題1.11,2,3,4一方面鞏固勾股定理,另一方面進(jìn)一步體會定理與實(shí)際生活的聯(lián)系。另外,補(bǔ)充一道開放題。

  四、設(shè)計(jì)說明

  1、本節(jié)課是公式課,根據(jù)學(xué)生的知識結(jié)構(gòu),我采用的教學(xué)流程是:提出問題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。

  2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般再到更一般的對直角三角形三邊關(guān)系的研究,得出結(jié)論。這種方法是認(rèn)識事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對于學(xué)生良好思維品質(zhì)的形成有重要作用,對學(xué)生的終身發(fā)展也有一定的作用。

  3、關(guān)于練習(xí)的設(shè)計(jì),除兩個(gè)實(shí)際問題和課本習(xí)題以外,我準(zhǔn)備設(shè)計(jì)一道開放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學(xué)生盡量地找出線段之間的關(guān)系。

  4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識的途徑等幾個(gè)方面展開,既有知識的總結(jié),又有方法的提煉,這樣對于學(xué)生學(xué)知識,用知識的意識是有很大的促進(jìn)的。

《勾股定理》說課稿4

  一、說教材

  本課時(shí)是華師大版八年級(上)數(shù)學(xué)第14章第二節(jié)內(nèi)容,是在掌握勾股定理的基礎(chǔ)上對勾股定理的應(yīng)用之一。 勾股定理是我國古數(shù)學(xué)的一項(xiàng)偉大成就。勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個(gè)重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實(shí)際生活的各個(gè)方面。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實(shí)際分析,使學(xué)生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實(shí)際生活中的廣泛應(yīng)用。 據(jù)此,制定教學(xué)目標(biāo)如下:

  1、知識和方法目標(biāo):通過對一些典型題目的思考,練習(xí),能正確熟練地進(jìn)行勾股定理有關(guān)計(jì)算,深入對勾股定理的理解。

  2、過程與方法目標(biāo):通過對一些題目的探討,以達(dá)到掌握知識的目的。

  3、情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美。

  教學(xué)重點(diǎn):勾股定理的應(yīng)用。

  教學(xué)難點(diǎn):勾股定理的正確使用。

  教學(xué)關(guān)鍵:在現(xiàn)實(shí)情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理。

  二、說教法和學(xué)法

  1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。

  2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。

  3、通過演示實(shí)物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  三、教學(xué)程序

  本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動手,動腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下:

  一、回顧問:

  勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來學(xué)習(xí)這個(gè)定理在實(shí)際生活中的應(yīng)用。

  二、新授課例

  1、如圖所示,有一個(gè)圓柱,它的高AB等于4厘米,底面周長等于20厘米,在圓柱下底面的A點(diǎn)有一只螞蟻,它想吃到上底面與A點(diǎn)相對的C點(diǎn)處的食物,沿圓柱側(cè)面爬行的最短路線是多少?(課本P57圖14.2.1)

 ?、賹W(xué)生取出自制圓柱,,嘗試從A點(diǎn)到C點(diǎn)沿圓柱側(cè)面畫出幾條路線。思考:那條路線最短?

 ?、谌鐖D,將圓柱側(cè)面剪開展成一個(gè)長方形,從A點(diǎn)到C點(diǎn)的最短路線是什么?你畫得對嗎?

  ③螞蟻從A點(diǎn)出發(fā),想吃到C點(diǎn)處的食物,它沿圓柱側(cè)面爬行的最短路線是什么?

  思路點(diǎn)撥:引導(dǎo)學(xué)生在自制的圓柱側(cè)面上尋找最短路線;提醒學(xué)生將圓柱側(cè)面展開成長方形,引導(dǎo)學(xué)生觀察分析發(fā)現(xiàn)“兩點(diǎn)之間的所有線中,線段最短”。 學(xué)生在自主探索的基礎(chǔ)上興趣高漲,氣氛異常的活躍,他們發(fā)現(xiàn)螞蟻從A點(diǎn)往上爬到B點(diǎn)后順著直徑爬向C點(diǎn)爬行的路線是最短的!我也意外的發(fā)現(xiàn)了這種爬法是正確的,但是課本上是順著側(cè)面往上爬的,我就告訴學(xué)生:“課本中的圓柱體是沒有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2.(課本P58圖14.2.3)

  思路點(diǎn)撥:廠門的寬度是足夠的,這個(gè)問題的關(guān)鍵是觀察當(dāng)卡車位于廠門正中間時(shí)其高度是否小于CH,點(diǎn)D在離廠門中線0.8米處,且CD⊥AB, 與地面交于H,尋找出Rt△OCD,運(yùn)用勾股定理求出2.3m,CD= = =0.6,CH=0.6+2.3=2.9>2.5可見卡車能順利通過 。詳細(xì)解題過程看課本 引導(dǎo)學(xué)生完成P58做一做。

  三、課堂小練

  1、課本P58練習(xí)第1,2題。

  2、探究: 一門框的尺寸如圖所示,一塊長3米,寬2.2米的薄木板是否能從門框內(nèi)通過?為什么?

  四、小結(jié)

  直角三角形在實(shí)際生活中有更為廣泛的應(yīng)用希望同學(xué)們能緊緊抓住直角三角形的性質(zhì),學(xué)透勾股定理的具體應(yīng)用,那樣就能很輕松的解決現(xiàn)實(shí)生活中的許多問題,達(dá)到事倍功半的效果。

  五、布置作業(yè)

  課本P60習(xí)題14.2第1,2,3題。

《勾股定理》說課稿5

尊敬的各位領(lǐng)導(dǎo),各位老師:

  大家好!今天我說課的內(nèi)容是初中八年級數(shù)學(xué)人教版教材第十八章第一節(jié)《勾股定理》(第一課時(shí)),下面我分五部分來匯報(bào)我這節(jié)課的教學(xué)設(shè)計(jì),這就是"教材分析"、"學(xué)情分析"、"教法選擇"、"學(xué)法指導(dǎo)"、"教學(xué)過程"。

  一、教材分析

 ?。ㄒ唬?教材地位和作用

  勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系,將幾何圖形與數(shù)字聯(lián)系起來。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在生產(chǎn)生活中有著廣泛的應(yīng)用。而且它在其它自然學(xué)科中也常常用到。因此,這節(jié)課有著舉足輕重的地位。

 ?。ǘ┙虒W(xué)目標(biāo)

  根據(jù)新課程標(biāo)準(zhǔn)的要求和本課的特點(diǎn),結(jié)合學(xué)生的實(shí)際情況,我確定了本課的教學(xué)目標(biāo):

  1、知識與技能方面

  了解勾股定理的文化背景,經(jīng)歷探索勾股定理的過程,掌握直角三角形三邊之間的數(shù)量關(guān)系, 并能簡單應(yīng)用。

  2、過程與方法方面

  經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,能感受到數(shù)學(xué)思考過程的條理性,發(fā)展數(shù)學(xué)的說理和簡單的推理的意識,和語言表達(dá)的能力,并體會數(shù)形結(jié)合和特殊到一般的思想方法。

  3、情感態(tài)度與價(jià)值觀方面

 ?。?)通過了解勾股定理的歷史,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激勵學(xué)生發(fā)奮學(xué)習(xí)。

  (2) 通過研究一系列富有探 究性的問題,培養(yǎng)學(xué)生與他人交流、合作的意識和品質(zhì)。

 ?。ㄈ┙虒W(xué)重點(diǎn)難點(diǎn)

  教學(xué)重點(diǎn):掌握勾股定理,并能用它來解決一些簡單的問題。

  教學(xué)難點(diǎn):勾股定理的證明。

  二、學(xué)情分析

  我們班日常經(jīng)常使用多媒體輔助教學(xué)。經(jīng)過一年多的幾何學(xué)習(xí),學(xué)生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學(xué)生解題思維能力比較高,能夠正確 歸納所學(xué)知識,通過學(xué)習(xí)小組討論交流,能夠形成解決問題的思路。 現(xiàn)在的學(xué)生已經(jīng)厭倦教師單獨(dú)的說教方式,希望教師設(shè)計(jì)便于他們進(jìn)行觀察的幾何環(huán)境,給他們自己探索、發(fā)表自己見解和表現(xiàn)自己才華的機(jī)會;更希望教師滿足他 們的創(chuàng)造愿望。

  三、教法選擇

  根據(jù)本節(jié)課的教學(xué)目標(biāo)、教學(xué)內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),結(jié)合我校的“當(dāng)堂達(dá)標(biāo)”教學(xué)模式,我在教法上采用引導(dǎo)發(fā)現(xiàn)法為主,并以分析法、討論法相結(jié)合。設(shè)計(jì)" 觀察——討論—?dú)w納"的教學(xué)方法,意在幫助學(xué)生通過自己動手實(shí)驗(yàn)和直觀情景觀察,從實(shí)踐中獲取知識,并通過討論來深化對知識的理解。本節(jié)課采用了多媒體輔 助教學(xué),能夠直觀、生動的反應(yīng)圖形,增加課堂的容量,同時(shí)有利于突出重點(diǎn)、分散難點(diǎn),增強(qiáng)教學(xué)形象性,更好的提高課堂效率。

  四、學(xué)法指導(dǎo):

  為了充分體現(xiàn)《新課標(biāo)》的要求,培養(yǎng)學(xué)生的觀察分析能力,邏輯思維能力,積累豐富的數(shù)學(xué)學(xué)習(xí)經(jīng)驗(yàn),這節(jié)課主要采用觀察分析,自主探索與合作交流的學(xué)習(xí)方 法,使學(xué)生積極參與教學(xué)過程。在教學(xué)過程中展開思維,培養(yǎng)學(xué)生提出問題、分析問題、解決問題的能力,進(jìn)一步體會觀察、類比、分析、從特殊到一般等數(shù)學(xué)思 想。借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主人。

  五、教學(xué)過程

  根據(jù)《新課標(biāo)》中"要引導(dǎo)學(xué)生投入到探索與交流的學(xué)習(xí)活動中"的教學(xué)要求,本節(jié)課的教學(xué)過程我是這樣設(shè)計(jì)的:

 ?。ㄒ唬﹦?chuàng)設(shè)情境,引入新課

  一個(gè)設(shè)計(jì)合理的情境引入可以說在一定程度上決定著學(xué)生能否帶著興趣積極投入到本節(jié)課的學(xué)習(xí)中。為了體現(xiàn)數(shù)學(xué)源于生活,數(shù)學(xué)是從人的需要中產(chǎn)生的,學(xué)習(xí)數(shù)學(xué)的目的是為了用數(shù)學(xué)解決實(shí)際問題。我設(shè)計(jì)了以下題目:

  星期日老師帶領(lǐng)全班同學(xué)去某山風(fēng)景區(qū)游玩,同學(xué)們看到山勢險(xiǎn)峻,查看景區(qū)示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,

  ∠ACB=90° ,你能用所學(xué)知識算出纜車路線AB長應(yīng)為多少?

  答案是不能的。然后教師指出,通過這節(jié)課的學(xué)習(xí),問題將迎刃而解。

  設(shè)計(jì)意圖:以趣味性題目引入。從而設(shè)置懸念,激發(fā)學(xué)生的學(xué)習(xí)興趣。 教師引導(dǎo)學(xué)生把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,這其中滲透了一種數(shù)學(xué)思想,對于學(xué)生也是一種挑戰(zhàn),能激發(fā)學(xué)生探究的欲望,自然引出下面的環(huán)節(jié)。

  緊接著出示本節(jié)課的學(xué)習(xí)目標(biāo):

  1、了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過程。

  2、掌握勾股定理的內(nèi)容,并會簡單應(yīng)用。

 ?。ǘ┕垂啥ɡ淼奶剿?/p>

  1、猜想結(jié)論

  (1)探究一:等腰直角三角形三邊關(guān)系。

  由課本64頁畢達(dá)哥拉斯的故事,探究等腰直角三角形三邊關(guān)系。結(jié)合課件中格點(diǎn)圖形的面積,學(xué)生自主探究,通過計(jì)算、討論、總結(jié),得出結(jié)論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。

  在此過程中,給學(xué)生充分的時(shí)間、觀察、比較、交流,最后通過活動讓學(xué)生用語言概括總結(jié)。

  提問:等腰直角三角形有這樣的性質(zhì),其他的直角三角形也有這樣的性質(zhì)嗎?

 ?。?、)探究二:一般的直角三角形三邊關(guān)系。

  在課件中的格點(diǎn)圖形中,利用面積,再次探究直角三角形的三邊關(guān)系。學(xué)生自主探究,通過計(jì)算、討論、總結(jié),得出結(jié)論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。

  設(shè) 計(jì)意圖:組織學(xué)生進(jìn)行討論,在此基礎(chǔ)上教師引導(dǎo)學(xué)生從三邊的平方有何大小關(guān)系入手進(jìn)行觀察。教師在多媒體課件上直觀地演示。通過學(xué)生自己探索、討論,由學(xué) 生自己得出結(jié)論。這樣,讓學(xué)生參與定理的再發(fā)現(xiàn)過程,他們通過自己觀察、計(jì)算所得出的定理,在心理產(chǎn)生自豪感,從而增強(qiáng)學(xué)生的學(xué)習(xí)數(shù)學(xué)的自信心。

  2、證明猜想

  目前世界上證明該勾股定理的方法有很多種,而我國古代數(shù)學(xué)家利用拼接、割補(bǔ)圖形,計(jì)算面積的思路提供了很多種證明方法,下面我們通過古人趙爽的方法進(jìn)行證 明。學(xué)生分組活動,根據(jù)圖形的面積進(jìn)行計(jì)算,推導(dǎo)出勾股定理的一般形式:a + b = c。即直角三角形兩直角邊的平方和等于斜邊的平方、

  設(shè)計(jì)意圖:通過利用多媒體課件的演示,更直觀、形象的向?qū)W生介紹用拼接、割補(bǔ)圖形,計(jì)算面積的證明方法,使學(xué)生認(rèn)識到證明的必要性、結(jié)論的確定性,感受到前人的偉大和智慧。

  3、簡要介紹勾股定理命名的由來

  我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被記載于我國古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中、我國稱這個(gè)結(jié)論為"勾股定理",西方畢達(dá)哥拉斯于公元前五世紀(jì)發(fā)現(xiàn)了勾股定理, 但他比商高晚出生五百多年。

  設(shè)計(jì)意圖:對比以上事實(shí)對學(xué)生進(jìn)行愛國主義教育,激勵他們奮發(fā)向上。

 ?。ㄈ┕垂啥ɡ淼膽?yīng)用

  1、利用勾股定理,解決引入中的問題。體會數(shù)學(xué)在實(shí)際生活中的應(yīng)用。

  2、教學(xué)例1:課本66頁探究1

  師生討論、分析: 木板的寬2、2米大于1米,所以橫著不能從門框內(nèi)通過.

  木板的寬2、2米大于2米,所以豎著不能從門框內(nèi)通過.

  因?yàn)閷蔷€AC的長度最大,所以只能試試斜著 能否通過.

  從而將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題.

  提示:

 ?。?)在圖中構(gòu)造出一個(gè)直角三角形。(連接AC)

  (2)知道直角△ABC的那條邊?

  (3)知道直角三角形兩條邊長求第三邊用什么方法呢?

  設(shè)計(jì)意圖:此題是將實(shí)際為題轉(zhuǎn)化為數(shù)學(xué)問題,從中抽象出Rt△ABC,并求出斜邊A C的長。本例意在滲透實(shí)際問題和勾股定理的知識聯(lián)系。通過系列問題的設(shè)置和解決,旨在降低難度,分散難點(diǎn),使難點(diǎn)予以突破,讓學(xué)生掌握勾股定理在具體問題中的應(yīng)用,使學(xué)生獲得新知,體驗(yàn)成功,從而增加學(xué)習(xí)興趣。

 ?。ㄋ模⒄n堂練習(xí) 習(xí)題18、1 1、5。 學(xué)生板演,師生點(diǎn)評。

  設(shè)計(jì)意圖:通過練習(xí)使學(xué)生加深對勾股定理的理解,讓學(xué)生比較練習(xí)題和例題中條件的異同,進(jìn)一步讓學(xué)生理解勾股定理的運(yùn)用。

 ?。ㄎ澹┱n堂小結(jié)

  對學(xué)生提問:"通過這節(jié)課的學(xué)習(xí)有什么收獲?"

  學(xué)生同桌間暢談自己的學(xué)習(xí)感受和體會,并請個(gè)別學(xué)生發(fā)言。

  設(shè)計(jì)意圖:讓學(xué)生自己小結(jié),活躍了氣氛,做到全員參與,理清了知識脈絡(luò),強(qiáng)化了重點(diǎn),培養(yǎng)了學(xué)生口頭表達(dá)能力。

 ?。┻_(dá)標(biāo)訓(xùn)練與反饋

  設(shè)計(jì)意圖:必做題較為簡單,要求全體學(xué)生完成;選作題有一點(diǎn)的難度,基礎(chǔ)較好的學(xué)生能夠完成,體現(xiàn)分層教學(xué)。

  以上內(nèi)容,我僅從"說教材","說學(xué)情"、"說教法"、"說學(xué)法"、"說教學(xué)過程"五個(gè)方面來說明這堂課"教什么"和"怎么教",也闡述了"為什么這樣 教",讓學(xué)生人人參與,注重對學(xué)生活動的評價(jià), 探索過程中,會為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境。希望得到各位專家領(lǐng)導(dǎo)的指導(dǎo)與指正,謝謝!

《勾股定理》說課稿6

  本節(jié)課設(shè)計(jì)力求讓學(xué)生參與知識的發(fā)現(xiàn)過程,體現(xiàn)以學(xué)生為主體,以促進(jìn)學(xué)生發(fā)展為本的教學(xué)理念,變知識的傳授者為學(xué)生自主探求知識的引導(dǎo)者、指導(dǎo)者、合作者。并利用多媒體,直觀教具演示,營造一個(gè)聲像同步,能動能靜的教學(xué)情境,給學(xué)生提供一個(gè)探索的空間,促使學(xué)生主動參與,親身體驗(yàn)勾股定理的探索證明過程,從而鍛煉思維、激發(fā)創(chuàng)造,優(yōu)化課堂教學(xué)。努力做到有傳統(tǒng)的教學(xué)課堂像實(shí)驗(yàn)課堂轉(zhuǎn)變,使學(xué)生真正成為學(xué)習(xí)的主人,培養(yǎng)了學(xué)生的素質(zhì)能力,達(dá)到了良好的教學(xué)效果。

  (一)創(chuàng)設(shè)情境,引入新課

  課前首先讓學(xué)生閱讀趙爽的弦圖相關(guān)知識讓他們體會中國古代科學(xué)的發(fā)達(dá)。在課堂上緊密結(jié)合前面已學(xué)的知識進(jìn)行導(dǎo)入。如提出問題:你見過這個(gè)圖案嗎?你聽說過勾股定理嗎?你還記得三角形的三邊遵循什么規(guī)律嗎?等等一系列的問題激起學(xué)生學(xué)生的熱情和求知欲,然后順利進(jìn)入探究。本節(jié)我們就來學(xué)習(xí)一下直角三角形的三條邊除具備前面的性質(zhì)外還有什么新的特征。

  (二)引導(dǎo)學(xué)生,探究新知

 ?、俪醪礁兄ɡ恚哼@一環(huán)節(jié)我選擇了教材的圖片,講述畢達(dá)哥拉斯到朋友家做客時(shí)發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問題,現(xiàn)在請同學(xué)觀察,看看有什么發(fā)現(xiàn)?(學(xué)案出示)使問題更形象、具體。

 ?、谔岢霾孪耄涸诨顒?的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過活動2進(jìn)行看一看、填一填、想一想、議一議、做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),學(xué)生再由淺到深,由特殊到一般的提出問題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平分和等于斜邊的平方。

 ?、圩C明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對一個(gè)一般的直角三角形進(jìn)行證明:通過活動3我充分引導(dǎo)學(xué)生利用直觀教具,進(jìn)行拼圖實(shí)驗(yàn),在動手操中放手讓學(xué)生思考、討論、合作、交流、探究問題的多種方法。,并對學(xué)生的做法給予表揚(yáng),使學(xué)生在學(xué)習(xí)過程中,感受到自我創(chuàng)造的快樂,從而分散了教學(xué)難點(diǎn),發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。

  ④總結(jié)定理:讓學(xué)生自己總結(jié),不完善之處由教師補(bǔ)充,在前面探究活動的基礎(chǔ)上,學(xué)生容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理。

  (三)反饋訓(xùn)練,鞏固新知

  學(xué)生對所學(xué)的知識是否掌握了,達(dá)到了什么程度?為了檢測學(xué)生對本課的達(dá)成情況和加強(qiáng)對學(xué)生能力的培養(yǎng),我設(shè)計(jì)了一組坡有難度的練習(xí)題。

  (四)歸納總結(jié),深化新知

  本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的問題是什么?……

  通過小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識成為體系。

  (五)布置作業(yè)。拓展新知

  讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流。使本節(jié)知識得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。

  (六)板書設(shè)計(jì),明確新知

《勾股定理》說課稿7

  一、 教材分析

 ?。ㄒ唬┙滩牡匚?/p>

  這節(jié)課是九年制義務(wù)教育初級中學(xué)教材北師大版八年級第一章第一節(jié)《探索勾股定理》第一課時(shí),它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。

 ?。ǘ┙虒W(xué)目標(biāo)

  知識與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡單實(shí)際問題.

  過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.

  情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生愛國熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).

 ?。ㄈ┙虒W(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來解決一些簡單的實(shí)際問題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.

  二、教法與學(xué)法分析:

  學(xué)情分析:八年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強(qiáng).

  教法分析:結(jié)合八年級學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.

  三、 教學(xué)過程設(shè)計(jì)

  1.創(chuàng)設(shè)情境,提出問題

  2.實(shí)驗(yàn)操作,模型構(gòu)建

  3.回歸生活,應(yīng)用新知

  4.知識拓展,鞏固深化5.感悟收獲,布置作業(yè)

  (一)創(chuàng)設(shè)情境提出問題

  (1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹 20xx年國際數(shù)學(xué) 的一枚紀(jì)念郵票 大會會標(biāo) 設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值.

  (2) 某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié).

  二、實(shí)驗(yàn)操作模型構(gòu)建

  1.等腰直角三角形(數(shù)格子)

  2.一般直角三角形(割補(bǔ))

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想.

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高.

  通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理.

  設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊—— 一般的認(rèn)知規(guī)律.

  三.回歸生活應(yīng)用新知

  讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心.

  四、知識拓展鞏固深化

  基礎(chǔ)題,情境題,探索題.

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展.知識的運(yùn)用得到升華.

  基礎(chǔ)題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題: 做一個(gè)長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。

  設(shè)計(jì)意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.

  五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么?

  作業(yè): 李景萍《探索勾股定理》第一課時(shí)說課稿 1、課本習(xí)題2.1 2、搜集有關(guān)勾股定理證明的資料.

  板書設(shè)計(jì) 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  李景萍《探索勾股定理》第一課時(shí)說課稿

  設(shè)計(jì)說明::1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法.

  2.讓學(xué)生人人參與,注重對學(xué)生活動的評價(jià),一是學(xué)生在活動中的投入程度;二是學(xué)生在活動中表現(xiàn)出來的思維水平、表達(dá)水平.

《勾股定理》說課稿8

  一、 教材分析

 ?。ㄒ唬┙滩牡匚慌c作用

  勾股定理它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。

  (二)教學(xué)目標(biāo) 知識與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡單實(shí)際問題。 過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。 情感態(tài)度與價(jià)值觀: 激發(fā)愛國熱情,體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

  (三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來解決一些簡單的實(shí)際問題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析:

  學(xué)情分析:七年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的.能力還有待加強(qiáng).

  教法分析:結(jié)合七年級學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、 教學(xué)過程設(shè)計(jì)

  1、創(chuàng)設(shè)情境,提出問題 2、實(shí)驗(yàn)操作,模型構(gòu)建 3、回歸生活,應(yīng)用新知 4、知識拓展,鞏固深化5、感悟收獲,布置作業(yè)

  (一)創(chuàng)設(shè)情境提出問題

  (1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹20xx年國際數(shù)學(xué)的一枚紀(jì)念郵票 大會會標(biāo)

  設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值。

  (2) 某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。

  二、實(shí)驗(yàn)操作模型構(gòu)建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補(bǔ))

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系? 設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高。

  通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理。

  設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊—— 一般的認(rèn)知規(guī)律。

  三。回歸生活應(yīng)用新知

  讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心。

  四、知識拓展鞏固深化

  基礎(chǔ)題,情境題,探索題。

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識的運(yùn)用得到升華。

  基礎(chǔ)題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境 ,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯(cuò)了。你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題: 做一個(gè)長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。

  設(shè)計(jì)意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

  五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么?

  作業(yè):1、課本習(xí)題2、1

  2、搜集有關(guān)勾股定理證明的資料。

  板書設(shè)計(jì) 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2?b2?c2

  設(shè)計(jì)說明:1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法.

  2、讓學(xué)生人人參與,注重對學(xué)生活動的評價(jià),一是學(xué)生在活動中的投入程度;二是學(xué)生在活動中表現(xiàn)出來的思維水平、表達(dá)水平。

《勾股定理》說課稿9

  一、教材分析

 ?。ㄒ唬┙滩牡匚?/p>

  這節(jié)課是九年制義務(wù)教育初級中學(xué)教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理解。

  (二)教學(xué)目標(biāo)

  1、知識與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡單實(shí)際問題。

  2、過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識、主動探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。

  3、情感態(tài)度與價(jià)值觀: 激發(fā)學(xué)生愛國熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

 ?。ㄈ┙虒W(xué)重點(diǎn)

  經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來解決一些簡單的實(shí)際問題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析

  學(xué)情分析:

  七年級學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識和能力還不夠。

  另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強(qiáng).

  教法分析:

  結(jié)合七年級學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境————建立模型————解釋應(yīng)用———拓展鞏固”的模式, 選擇引導(dǎo)探索法。

  把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、教學(xué)過程設(shè)計(jì)

 ?。ㄒ唬﹦?chuàng)設(shè)情境,提出問題

 ?。?)圖片欣賞勾股定理數(shù)形圖

  1955年希臘發(fā)行美麗的勾股樹

  20xx年國際數(shù)學(xué)的一枚紀(jì)念郵票

  大會會標(biāo)

  設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值。

 ?。?)某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。

  (二)實(shí)驗(yàn)操作模型構(gòu)建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補(bǔ))

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高。

  通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理。

  設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊—— 一般的認(rèn)知規(guī)律。

  (三)回歸生活應(yīng)用新知

  讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,增加學(xué)以致用的樂趣和信心。

 ?。ㄋ模┲R拓展鞏固深化

  基礎(chǔ)題,情境題,探索題。

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識的運(yùn)用得到升華。

  基礎(chǔ)題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境 ,鍛煉了發(fā)散思維。

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯(cuò)了。你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識,也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題: 做一個(gè)長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識說明。

  設(shè)計(jì)意圖:探索題的難度相對大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

  (五)感悟收獲布置作業(yè)

  這節(jié)課你的收獲是什么?

  作業(yè):

  1、課本習(xí)題2.1

  2、搜集有關(guān)勾股定理證明的資料。

  四、板書設(shè)計(jì)

  探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  設(shè)計(jì)說明:

  1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會數(shù)形結(jié)合及從特殊到一般的思想方法。

  2、讓學(xué)生人人參與,注重對學(xué)生活動的評價(jià),一是學(xué)生在活動中的投入程度;二是學(xué)生在活動中表現(xiàn)出來的思維水平、表達(dá)水平。

  圖文搜集自網(wǎng)絡(luò),如有侵權(quán),請聯(lián)系刪除。

  鐵樹老師面試輔導(dǎo),喜馬拉雅app—主播—教師面試大雜燴

《勾股定理》說課稿10

  一、勾股定理是我國古數(shù)學(xué)的一項(xiàng)偉大成就.勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個(gè)重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實(shí)際生活的各個(gè)方面.教材在編寫時(shí)注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實(shí)際分析,使學(xué)生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實(shí)際生活中的廣泛應(yīng)用. 據(jù)此,制定教學(xué)目標(biāo)如下:

  1.知識和方法目標(biāo):通過對一些典型題目的思考,練習(xí),能正確熟練地進(jìn)行勾股定理有關(guān)計(jì)算,深入對勾股定理的理解. 2.過程與方法目標(biāo):通過對一些題目的探討,以達(dá)到掌握知識的目的.

  3.情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美.

  教學(xué)重點(diǎn):勾股定理的應(yīng)用. 教學(xué)難點(diǎn):勾股定理的正確使用.

  教學(xué)關(guān)鍵:在現(xiàn)實(shí)情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理.

  二.說教法和學(xué)法

  1.以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程.

  2.切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力.

  3.通過演示實(shí)物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望.

  三、教學(xué)程序本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動手,動腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下: 回顧問:勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來學(xué)習(xí)這個(gè)定理在實(shí)際生活中的應(yīng)用.

《勾股定理》說課稿11

  (一)創(chuàng)設(shè)問題情境,引入新課:

  在這一環(huán)節(jié)中,我設(shè)計(jì)了這樣一個(gè)情境,多媒體動畫展示,米老鼠來到了數(shù)學(xué)王國里的三角形城堡,要求只利用一根繩子,構(gòu)造一個(gè)直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預(yù)測大多數(shù)同學(xué)會無從下手,這樣引出課題。只有學(xué)習(xí)了勾股定理的逆定理后,大家都能幫助米老鼠進(jìn)入城堡,我認(rèn)為:“大疑而大進(jìn)”這樣做,充分調(diào)動學(xué)習(xí)內(nèi)容,激發(fā)求知欲望,動漫演示,又有了很強(qiáng)的趣味性,做到課之初,趣已生,疑已質(zhì)。

  (二)實(shí)踐猜想

  本環(huán)節(jié)要圍繞以下幾個(gè)活動展開:

  1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長。

  1a=3b=42a=5b=123a=2.5b=64a=6b=8

  2、猜一猜,以下列線段長為三邊的三角形形狀

  13cm4cm5cm25cm12cm13cm

  32.5cm6cm6.5cm46cm8cm10cm

  3、擺一擺利用方便筷來操作問題2,利用量角器來度量,驗(yàn)證問題2的發(fā)現(xiàn)。

  4、用恰當(dāng)?shù)恼Z言敘述你的結(jié)論

  在算一算中學(xué)生復(fù)習(xí)了勾股定理,猜一猜和擺一擺中學(xué)生小組合作動手實(shí)踐,在問題1的基礎(chǔ)上做出合理的推測和猜想,這樣分層遞進(jìn)找到了學(xué)生思維的最近發(fā)展區(qū),面向不同層次的每一名學(xué)生,每一名學(xué)生都有參與數(shù)學(xué)活動的機(jī)會,最后運(yùn)用恰當(dāng)?shù)恼Z言表述,得到了勾股定理的逆定理。在整個(gè)過程的活動中,教師給學(xué)生充分的時(shí)間和空間,教師以平等的身份參與小組活動中,傾聽意見,幫助指導(dǎo)學(xué)生的實(shí)踐活動。學(xué)生的擺一擺的過程利用實(shí)物投影儀展示,在活動中教師關(guān)注;

  1)學(xué)生的參與意識與動手能力。

  2)是否清楚三角形三邊長度的平方關(guān)系是因,直角三角形是果。既先有數(shù),后有形。

  3)數(shù)形結(jié)合的思想方法及歸納能力。

  (三)推理證明

  八年級正是學(xué)生由實(shí)驗(yàn)幾何向推理幾何過渡的重要時(shí)期,多數(shù)學(xué)生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,而構(gòu)造直角三角形就成為解決問題的關(guān)鍵,直接拋給學(xué)生證明,無疑會石沉大海,所以,我采用分層導(dǎo)進(jìn)的方法,以求一石激起千層浪。

  1.三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系?你是怎樣得到的?請簡要說明理由?

  2.△ABC三邊長a,b,c滿足a2+b2=c2與a,b為直角三角形之間有何關(guān)系?試說明理由?

  為了較好完成教師的誘導(dǎo),教師要給學(xué)生獨(dú)立思考的時(shí)間,要給學(xué)生在組內(nèi)交流個(gè)別意見的時(shí)間,教師要深入小組指導(dǎo)與幫助,并利用實(shí)物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構(gòu)造直角三角形這一解決問題的關(guān)鍵,讓他們在不斷的探究過程中,親自體驗(yàn)參與發(fā)現(xiàn)創(chuàng)造的愉悅,有效的突破了難點(diǎn)。

《勾股定理》說課稿12

各位專家領(lǐng)導(dǎo):

  上午好!今天我說課的課題是《勾股定理》。

  一、教材分析:

  (一)本節(jié)內(nèi)容在全書和章節(jié)的地位。

  這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時(shí)。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動手操作能力和觀察分析問題的能力;通過實(shí)際分析,拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較,理解勾股定理,以便于正確的進(jìn)行運(yùn)用。

  (二)三維教學(xué)目標(biāo):

  1、知識與能力目標(biāo)。

 ?。?)理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運(yùn)用勾股定理及其計(jì)算;

 ?。?)通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。

  2、過程與方法目標(biāo)。

  在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察-猜想-歸納-驗(yàn)證”的數(shù)學(xué)思想,并體會數(shù)形結(jié)合和從特殊到一般的思想方法。

  3、情感態(tài)度與價(jià)值觀。

  通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。

  (三)教學(xué)重點(diǎn)、難點(diǎn):

  1、教學(xué)重點(diǎn):勾股定理的證明與運(yùn)用

  2、教學(xué)難點(diǎn):用面積法等方法證明勾股定理

  3、難點(diǎn)成因:

  對于勾股定理的得出,首先需要學(xué)生通過動手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學(xué)結(jié)論,而這需要學(xué)生具備一定的分析、歸納的思維方法和運(yùn)用數(shù)學(xué)的思想意識,但學(xué)生在這一方面的可預(yù)見性和耐挫折能力并不是很成熟,從而形成困難。

  4、突破措施:

 ?。?)創(chuàng)設(shè)情景,激發(fā)思維:

  創(chuàng)設(shè)生動、啟發(fā)性的問題情景,激發(fā)學(xué)生的問題沖突,讓學(xué)生在感到“有趣”、“有意思”的狀態(tài)下進(jìn)入學(xué)習(xí)過程;

 ?。?)自主探索,敢于猜想:

  充分讓自己動手操作,大膽猜想數(shù)學(xué)問題的結(jié)論,老師是整個(gè)活動的組織者,更是一位參入者,學(xué)生之間相互交流、協(xié)作,從而形成生動的課堂環(huán)境;

 ?。?)張揚(yáng)個(gè)性,展示風(fēng)采:

  實(shí)行“小組合作制”,各小組中自己推薦一人擔(dān)任“發(fā)言人”,一人擔(dān)任“書記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報(bào)本小組的討論結(jié)果,并可上臺利用“多媒體視頻展示臺”展示本組的優(yōu)秀作品,其他小組給予評價(jià)。這樣既保證討論的有效性,也調(diào)動了學(xué)生的學(xué)習(xí)積極性。

  二、教法與學(xué)法分析:

  1、教法分析:

  數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對初二年級學(xué)生的認(rèn)知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導(dǎo)探索法”,由淺到深,由特殊到一般的提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時(shí)代精神?;镜慕虒W(xué)程序是“創(chuàng)設(shè)情景-動手操作-歸納驗(yàn)證-問題解決-課堂小結(jié)-布置作業(yè)”六個(gè)方面。

  2、學(xué)法分析:

  新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師要有組織、有目的、有針對性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動中,鼓勵學(xué)生采用自主探索,合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動手”、“動腦”、“動口”的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、教學(xué)過程設(shè)計(jì):

  (一)創(chuàng)設(shè)情景:

  多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊(duì)員能否進(jìn)入三樓滅火?

  問題的設(shè)計(jì)有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學(xué)生會感到一些困難,從而老師指出學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會有辦法解決了。這種以實(shí)際問題作為切入點(diǎn)導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學(xué)來源于生活”,學(xué)習(xí)數(shù)學(xué)是為更好“服務(wù)于生活”。

  (二)動手操作:

  1、課件出示課本P99圖19.2.1:

  觀察圖中用陰影畫出的三個(gè)正方形,你從中能夠得出什么結(jié)論?

  學(xué)生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學(xué)生用語言進(jìn)行描述,引導(dǎo)學(xué)生發(fā)現(xiàn)SP+SQ=SR(此時(shí)讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過正方形的面積之間的關(guān)系發(fā)現(xiàn):對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時(shí),則 AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。

  2、緊接著讓學(xué)生思考:

  上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖 19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對于一般的以整數(shù)為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學(xué)生的動手操作、合作交流,來獲取知識,這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過程,提高學(xué)生的分析問題和解決問題的能力。

  3、再問:

  當(dāng)邊長不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個(gè)邊長分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學(xué)生計(jì)算。這樣設(shè)計(jì)的目的是讓學(xué)生體會到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。

  (三)歸納驗(yàn)證:

  1、歸納:

  通過動手操作、合作交流,探索邊長為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個(gè)學(xué)習(xí)過程中感受學(xué)數(shù)學(xué)的樂趣,,使學(xué)生學(xué)會“文字語言”與“數(shù)學(xué)語言”這兩種表達(dá)方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識,解決問題。

  2、驗(yàn)證:

  先后三次驗(yàn)證“勾股定理”這一結(jié)論,期間學(xué)生動手進(jìn)行了畫圖、剪圖、拼圖,還有測量、計(jì)算等活動,使學(xué)生從中體會到數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想,而且這一過程也有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。

  (四)問題解決:

  1、讓學(xué)生解決開始上課前所提出的問題,前后呼應(yīng),讓學(xué)生體會到成功的快樂。

  2、自學(xué)課本P101例1,然后完成P102練習(xí)。

  (五)課堂小結(jié):

  1、小組成員從內(nèi)容、數(shù)學(xué)思想方法、獲取知識的途徑進(jìn)行小結(jié),后由“發(fā)言人”匯報(bào),小組間要互相比一比,看看哪一個(gè)小組表現(xiàn)最佳。

  2、教師用多媒體介紹“勾股定理史話”。

  (1)《周髀算徑》:西周的商高(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。

  (2)康熙數(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨(dú)創(chuàng)。

  3、目的:對學(xué)生進(jìn)行愛國主義教育,激勵學(xué)生奮發(fā)向上。

  (六)布置作業(yè):

  課本P104習(xí)題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進(jìn)一步體會定理與實(shí)際生活的聯(lián)系。

  以上內(nèi)容,我僅從“說教材”,“說學(xué)情”、“說教法”、“說學(xué)法”、“說教學(xué)過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導(dǎo)對本次說課提出寶貴的意見,謝謝!

《勾股定理》說課稿12篇相關(guān)文章:

八年級勾股定理教學(xué)反思8篇(初二數(shù)學(xué)勾股定理教學(xué)反思)

勾股定理說課稿3篇(數(shù)學(xué)說課稿勾股定理)

勾股定理逆命題說課稿3篇 勾股定理逆定理課標(biāo)要求

關(guān)于勾股定理說課稿5篇 勾股定理第一課時(shí)說課稿

勾股定理說課稿3篇

勾股定理說課稿范文3篇(人教版勾股定理說課稿一等獎)

《勾股定理》說課稿6篇 勾股定理的簡單應(yīng)用說課稿

勾股定理說課稿6篇(勾股定理證明)

《勾股定理》說課稿7篇 勾股定理的說課

勾股定理教學(xué)反思【合集4篇】