亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

高一數(shù)學(xué)教學(xué)計劃12篇

時間:2024-04-01 15:27:00 教學(xué)計劃

  下面是范文網(wǎng)小編整理的高一數(shù)學(xué)教學(xué)計劃12篇,供大家賞析。

高一數(shù)學(xué)教學(xué)計劃12篇

高一數(shù)學(xué)教學(xué)計劃1

  一、教學(xué)目標(biāo).

  (一)情意目標(biāo)

  (1)通過分析問題的方法的教學(xué),培養(yǎng)學(xué)生 的學(xué)習(xí)的興趣。

  (2)提供生活背景,通過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。

  (3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價,提高學(xué)生的合作意識

  (4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅定學(xué)習(xí)信念和學(xué)習(xí)信心。

  (5)還時空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。

  (6)讓學(xué)生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。

  (二)能力要求

  1、培養(yǎng)學(xué)生記憶能力。

  (1)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。

  (3)通過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶能力。

  2、培養(yǎng)學(xué)生 的運算能力。

  (1)通過概率的訓(xùn)練,培養(yǎng)學(xué)生 的運算能力。

  (2)加強對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生 的運算能力。

  (3)通過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運算過程具有明晰性、合理性、簡捷性能力。

  (4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。

  (5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運算能力。

  3、培養(yǎng)學(xué)生 的思維能力。

  (1)通過對簡易邏輯的教學(xué),培養(yǎng)學(xué)生 思維的周密性及思維的邏輯性。

  (2)通過不等式、函數(shù)的一題多解、多題一解,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。

  (3)通過不等式、函數(shù)的引伸、推廣,培養(yǎng)學(xué)生 的創(chuàng)造性思維。

  (4)加強知識的橫向聯(lián)系,培養(yǎng)學(xué)生 的數(shù)形結(jié)合的能力。

  (5)通過典型例題不同思路的分析,培養(yǎng)思維的靈活性,是學(xué)生掌握轉(zhuǎn)化思想方法。

  (三)知識目標(biāo)

  1.集合、簡易邏輯

  (1)理解集合、子集、補訂、交集、交集的概念.了解空集和全集的意義.了解屬于、包含、相等關(guān)系的意義.掌握有關(guān)的術(shù)語和符號,并會用它們正確表示一些簡單的集合.

  (2)理解邏輯聯(lián)結(jié)詞"或"、"且"、"非"的含義.理解四種命題及其相互關(guān)系.掌握充分條件、必要條件及充要條件的意義.

  (3)掌握一元二次不等式、絕對值不等式的解法。

  2.函數(shù)

  (1)了解映射的概念,理解函數(shù)的概念.

  (2)了解函數(shù)的單調(diào)性、奇偶性的概念,掌握判斷一些簡單函數(shù)的單調(diào)性、奇偶性的方法.

  (3)了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖像間的關(guān)系,會求一些簡單函數(shù)的反函數(shù).

  (4)理解分?jǐn)?shù)指數(shù)冪的概念,掌握有理指數(shù)冪的運算性質(zhì).掌握指數(shù)函數(shù)的概念、圖像和性質(zhì).

  (5)理解對數(shù)的概念,掌握對數(shù)的運算性質(zhì).掌握對數(shù)函數(shù)的概念、圖像和性質(zhì).

  (6)能夠運用函數(shù)的性質(zhì)、指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì)解決某些簡單的實際問題.

  3.數(shù)列

  (1)理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.

  (2)理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題.

  (3)理解等比數(shù)列的概念,掌握等比數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題.

  二、教學(xué)重點

  1、集合、子集、補集、交集、并集.一元二次不等式的解法

  四種命題.充分條件和必要條件.

  2.映射、函數(shù)、函數(shù)的單調(diào)性、反函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、函數(shù)的應(yīng)用.

  3.等差數(shù)列及其通項公式.等差數(shù)列前n項和公式.

  等比數(shù)列及其通項公式.等比數(shù)列前n項和公式.

  三、教學(xué)難點

  1. 四種命題.充分條件和必要條件

  2. 反函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)

  3. 等差、等比數(shù)列的性質(zhì)

  四、工作措施.

  1、抓好課堂教學(xué),提高教學(xué)效益。

  課堂教學(xué)是教學(xué)的主要環(huán)節(jié),因此,抓好課堂教學(xué)是教學(xué)之根本,是大面積提高數(shù)學(xué)成績的主途徑。

  (1)、扎實落實集體備課,通過集體討論,抓住教學(xué)內(nèi)容的實質(zhì),形成較好的教學(xué)方案,擬好典型例題、練習(xí)題、周練題、章考題、月考題。

  (2)、加大課堂教改力度,培養(yǎng)學(xué)生 的自主學(xué)習(xí)能力。最有效的學(xué)習(xí)是自主學(xué)習(xí),因此,課堂教學(xué)要大力培養(yǎng)學(xué)生自主探究的精神,通過“知識的產(chǎn)生,發(fā)展”,逐步形成知識體系;通過“知識質(zhì)疑、展活”遷移知識、應(yīng)用知識,提高能力。同時要養(yǎng)成學(xué)生良好的學(xué)習(xí)習(xí)慣,不斷提高學(xué)生的數(shù)學(xué)素養(yǎng),從而提高數(shù)學(xué)素養(yǎng),并大面積提高數(shù)學(xué)成績。

高一數(shù)學(xué)教學(xué)計劃2

  一、學(xué)生情景分析

  本學(xué)期擔(dān)任高一森林班的數(shù)學(xué)教學(xué)工作,學(xué)生共有66人,大部分學(xué)生學(xué)習(xí)習(xí)慣好,學(xué)習(xí)目標(biāo)明確、勤奮、主動,學(xué)習(xí)動力足,少數(shù)同學(xué)質(zhì)疑“學(xué)習(xí)是否有用”;另外,少數(shù)學(xué)生不能正確評價自我,這給教學(xué)工作帶來了必須的難度,在學(xué)習(xí)中取得長足的提高,必須要引導(dǎo)他們,擺正學(xué)習(xí)態(tài)度,讓他們體會到學(xué)習(xí)的樂趣,學(xué)習(xí)給他們帶來的成就感,提高他們學(xué)習(xí)的進(jìn)取性,還要不斷的鼓勵他們,培養(yǎng)他們良好的學(xué)習(xí)習(xí)慣。

  二、教學(xué)目標(biāo)

  1、由數(shù)學(xué)活動、故事等等,經(jīng)過分析問題的方法的教學(xué),提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

  2、注意從實例出發(fā),從感性提高到理性,供給生活背景,經(jīng)過動手建立幾何模型,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。

  3、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。經(jīng)過不一樣形式的自主學(xué)習(xí)、探究活動,體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。

  4、提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本本事。

  5、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨立獲取數(shù)學(xué)知識的本事。

  6、經(jīng)過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實及具體數(shù)據(jù)的記憶。發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。

  7、加強知識的橫向聯(lián)系,培養(yǎng)學(xué)生的數(shù)形結(jié)合的本事。

  8、具有必須的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

  三、教材分析

  本學(xué)期學(xué)習(xí)的資料主要有集合,函數(shù)和空間幾何體,這些都是高中數(shù)學(xué)的基礎(chǔ)知識,其中函數(shù)更是高中數(shù)學(xué)的學(xué)習(xí)重點,也是學(xué)習(xí)其他資料的必備基礎(chǔ),空間幾何是高考中不可忽略的重要部分,在教學(xué)上要注重學(xué)生的邏輯思維本事、空間想象本事的培養(yǎng)及自學(xué)本事的逐步構(gòu)成。

  四、教學(xué)措施

  1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和提高。

  2、注意從實例出發(fā),從感性提高到理性;注意運用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

  3、加強培養(yǎng)學(xué)生的邏輯思維本事就解決實際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

  4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。

  5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不一樣的教材資料選擇不一樣教法。

  6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用本事的培養(yǎng)。

高一數(shù)學(xué)教學(xué)計劃3

  進(jìn)一步深化教育教學(xué)改革,樹立全新的語文教育觀,構(gòu)建全新而科學(xué)的教學(xué)目標(biāo)體系、數(shù)學(xué)網(wǎng)特制定高一上學(xué)期數(shù)學(xué)函數(shù)的基本性質(zhì)教學(xué)計劃模板。

  教材分析

  函數(shù)性質(zhì)是函數(shù)的固有屬性,是認(rèn)識函數(shù)的重要手段,而函數(shù)性質(zhì)可以由函數(shù)圖象直觀的反應(yīng)出來,因此,函數(shù)各個性質(zhì)的學(xué)習(xí)要從特殊的、已知的圖象入手,抽象出此類函數(shù)的共同特征,并用數(shù)學(xué)語言來定義敘述?;诖耍竟?jié)的概念課教學(xué)要注重引導(dǎo),注重知識的形成過程,習(xí)題課教學(xué)以具體技巧、方法作為輔助練習(xí)。

  學(xué)情分析

  學(xué)生對函數(shù)概念重新認(rèn)識之后,可以結(jié)合初中學(xué)過的簡單函數(shù)的圖象對函數(shù)性質(zhì)進(jìn)行抽象定義。另外,為了方便學(xué)生做題及熟悉函數(shù)性質(zhì),還需要補充一些函數(shù)圖象的知識,例如平移、二次函數(shù)圖象、含絕對值函數(shù)的圖象、反比例函數(shù)及其變形的函數(shù)圖象??傊?,本節(jié)課的教學(xué)要從學(xué)生認(rèn)知實際出發(fā),堅持從圖象中來到圖象中去的原則。

  教學(xué)建議

  以圖象作為切入點進(jìn)行概念課教學(xué),引導(dǎo)學(xué)生對概念的形成有一個清晰的認(rèn)識,尤其是概念中的部分關(guān)鍵詞要做深入講解,用函數(shù)圖象指導(dǎo)學(xué)生做題。

 教學(xué)目標(biāo)

  知識與技能

  (1)能理解函數(shù)單調(diào)性、最值、奇偶性的圖形特征

  (2)會用單調(diào)性定義證明具體函數(shù)的單調(diào)性;會求函數(shù)的最值;會用奇偶性定義判斷函數(shù)奇偶性

  (3)單調(diào)性與奇偶性的綜合題

  (4)培養(yǎng)學(xué)生觀察、歸納、推理的抽象思維能力

  過程與方法

  (1)從觀察具體函數(shù)的圖像特征入手,結(jié)合相應(yīng)問題引導(dǎo)學(xué)生一步步轉(zhuǎn)化到用數(shù)學(xué)語言形式化的建立相關(guān)概念

  (2)滲透數(shù)形結(jié)合的數(shù)學(xué)思想進(jìn)行習(xí)題課教學(xué)

  情感、態(tài)度與價值觀

  (1)使學(xué)生學(xué)會認(rèn)識事物的一般規(guī)律:從特殊到一般,抽象歸納

  (2)培養(yǎng)學(xué)生嚴(yán)密的邏輯思維能力,進(jìn)一步規(guī)范學(xué)生用數(shù)學(xué)語言、數(shù)學(xué)符號進(jìn)行表達(dá)

  課時安排

  (1)概念課:單調(diào)性2課時,最值1課時,奇偶性1課時

  (2)習(xí)題課:5課時

高一數(shù)學(xué)教學(xué)計劃4

  為圓滿完成新高一的教學(xué)任務(wù),使學(xué)生全面系統(tǒng)的掌握必修一到四的學(xué)習(xí)內(nèi) 容,提高學(xué)生的數(shù)學(xué)素養(yǎng),我們高一數(shù)學(xué)組秉承“高一決定高考,細(xì)節(jié)決定成敗”的思想,從初、高中銜接起認(rèn)真分析學(xué)情,積極研討,制定本學(xué)期教學(xué)計劃如下:

  一、學(xué)生基本狀況:

  (1)本年級共12個行政班,學(xué)生860人。在中考數(shù)學(xué)成績滿分120分的基礎(chǔ)上,我級100分以上的人很少,相對來說90分以上屬于高分,絕大多數(shù)90分以下;學(xué)生數(shù)學(xué)底子薄弱,學(xué)習(xí)環(huán)節(jié)不完整,學(xué)習(xí)習(xí)慣不科學(xué);另外,班級差異大,層次多。我們要加強集體備課力度,夯實基礎(chǔ),培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。

 ?。?)由于初高中分別實施課改教學(xué),高中教學(xué)內(nèi)容與初中所學(xué)銜接度遠(yuǎn)遠(yuǎn)不夠,存在較大斷層,我們需制定并學(xué)習(xí)銜接材料,并且在新授的同時適時補充一些內(nèi)容,勢必擠占新課的授課時間,時間緊任務(wù)重。我們要珍惜每一堂課,優(yōu)化每一環(huán)節(jié),提高學(xué)習(xí)效率,探索高效課堂。

 ?。?)高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,學(xué)生有的是一份執(zhí)著,期望值也較大。理想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,我們必須轉(zhuǎn)變教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。

 ?。?)剛剛進(jìn)入高一的學(xué)生還停留在初中時的學(xué)習(xí)習(xí)慣和學(xué)習(xí)方法以及對數(shù)學(xué)學(xué)習(xí)的散漫認(rèn)識上,我們要從學(xué)生的認(rèn)識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。

  二、教學(xué)內(nèi)容任務(wù):

  本學(xué)期完成數(shù)學(xué)人教A版《必修1》和《必修2》兩冊內(nèi)容。

  三、教學(xué)措施要求:

 ?。?)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作;加強自我學(xué)習(xí),特別是兩個綱領(lǐng)性文件——《國家普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)教學(xué)要求》和《20xx年山東省高考數(shù)學(xué)科考試說明》的學(xué)習(xí),吃透大綱,準(zhǔn)確把握教學(xué)要求,提高教學(xué)效率,不做無用功。

 ?。?)加強集體備課,發(fā)動全組同志,確定階段主講人,集思廣益,討論優(yōu)化教學(xué)方案;各班級統(tǒng)一進(jìn)度,分層要求,分層作業(yè),分層考試;注意運用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運用多媒體、投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。

 ?。?)著眼于基礎(chǔ)知識與重點內(nèi)容,集中精力打好基礎(chǔ),分項突破難點。充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機結(jié)合。

 ?。?)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解、訓(xùn)練數(shù)學(xué)能力和培養(yǎng)數(shù)學(xué)素養(yǎng)。

 ?。?)讓學(xué)生通過單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)總結(jié)總結(jié)總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備。

 ?。?)精心組織教學(xué),保護(hù)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,重視數(shù)學(xué)學(xué)習(xí)能力培養(yǎng);抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)分層培養(yǎng)和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。

高一數(shù)學(xué)教學(xué)計劃5

  一、教材依據(jù)

  本節(jié)課是北師大版數(shù)學(xué)(必修2)第二章《解析幾何初步》第一節(jié)《1.2直線的方程》第一部分《直線方程的點斜式》內(nèi)容。

  二、教材分析

  直線方程的點斜式給出了根據(jù)已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式

  、兩點式都是由點斜式推出的。從初中代數(shù)中的一次函數(shù)引入,自然過渡到本節(jié)課想要解決的問題求直線方程問題。在引入,過程中要讓學(xué)生弄清

  直線與方程的一一對應(yīng)關(guān)系,理解研究直線可以從研究方程和方程的特征入手。

  在推導(dǎo)直線方程的點斜式時,根據(jù)直線這一結(jié)論,先猜想確定一條直線的條件,再根據(jù)猜想得到的條件求出直線方程。

  三、教學(xué)目標(biāo)

  知識與技能:

 ?。?)理解直線方程的點斜式、斜截式的形式特點和適用范圍;

 ?。?)能正確利用直線的點斜式、斜截式公式求直線方程。

  (3)體會直線的斜截式方程與一次函數(shù)的關(guān)系。

  過程與方法:在已知直角坐標(biāo)系內(nèi)確定一條直線的幾何要素直線上的一點和直線的傾斜角的基礎(chǔ)上,通過師生探討,得出直線的點斜式方程;學(xué)生

  通過對比理解截距與距離的區(qū)別。

  情態(tài)與價值觀:通過讓學(xué)生體會直線的斜截式方程與一次函數(shù)的關(guān)系,進(jìn)一步培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,滲透數(shù)學(xué)中普遍存在相互聯(lián)系、相互轉(zhuǎn)化

  等觀點,使學(xué)生能用聯(lián)系的觀點看問題。

  四、教學(xué)重點

  重點:直線的點斜式方程和斜截式方程。

  五、教學(xué)難點

  難點:直線的點斜式方程和斜截式方程的應(yīng)用。

  要點:運用數(shù)形結(jié)合的思想方法,幫助學(xué)生分析描述幾何圖形。

  六、教學(xué)準(zhǔn)備

  1.教學(xué)方法的選擇:啟發(fā)、引導(dǎo)、討論.

  創(chuàng)設(shè)問題情境,采用啟發(fā)誘導(dǎo)式的教學(xué)模式引導(dǎo)學(xué)生探索討論,學(xué)生主動參與提出問題、探索問題和解決問題的過程,突出以學(xué)生為主體的探究性

  學(xué)習(xí)活動。

  2.通過讓學(xué)生觀察、討論、辨析、畫圖,親身實踐,調(diào)動多感官去體驗數(shù)學(xué)建模的思想;學(xué)生要學(xué)會用數(shù)形結(jié)合的方法建立起代數(shù)問題與幾何問題

  間的密切聯(lián)系。為使學(xué)生積極參與課堂學(xué)習(xí),我主要指導(dǎo)了以下的學(xué)習(xí)方法:

 ?、?讓學(xué)生自己發(fā)現(xiàn)問題,自己通過觀察圖像歸納總結(jié),自己評析解題對錯,從而提高學(xué)生的參與意識和數(shù)學(xué)表達(dá)能力。

 ?、?分組討論。

高一數(shù)學(xué)教學(xué)計劃6

  一、教材資料分析

  函數(shù)是高中數(shù)學(xué)的重要資料,函數(shù)的表示法是“函數(shù)及其表示”這一節(jié)的主要資料之一。學(xué)習(xí)函數(shù)的表示法,不僅僅是研究函數(shù)本身和應(yīng)用函數(shù)解決實際問題所必須涉及的問題,也是加深對函數(shù)概念理解所必須的。同時,基于高中階段所接觸的許多函數(shù)均可用幾種不一樣的方式表示,因而學(xué)習(xí)函數(shù)的表示也是領(lǐng)悟數(shù)學(xué)思想方法(如數(shù)形結(jié)合、化歸等)、學(xué)會根據(jù)問題需要選擇表示方法的重要過程。

  學(xué)生在學(xué)習(xí)用集合與對應(yīng)的語言刻畫函數(shù)之前,比較習(xí)慣于用解析式表示函數(shù),但這是對函數(shù)很不全面的認(rèn)識。在本節(jié)中,從引進(jìn)函數(shù)概念開始,就比較注重函數(shù)的不一樣表示方法:解析法、圖象法、列表法。函數(shù)的不一樣表示法能豐富對函數(shù)的認(rèn)識,幫忙理解抽象的函數(shù)概念。異常是在信息技術(shù)環(huán)境下,能夠使函數(shù)在數(shù)形結(jié)合上得到更充分的表現(xiàn),使學(xué)生更好地體會這一重要的數(shù)學(xué)思想方法。所以,在研究函數(shù)時,應(yīng)充分發(fā)揮圖象直觀的作用;在研究圖象時要注意代數(shù)刻畫,以求思考和表述的精確性。

  二、教學(xué)目標(biāo)分析

  根據(jù)《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(實驗)和新課改的理念,我從知識、本事和情感三個方面制訂教學(xué)目標(biāo)。

  1、明確函數(shù)的三種表示方法(圖象法、列表法、解析法),經(jīng)過具體的實例,了解簡單的分段函數(shù)及其應(yīng)用。

  2、經(jīng)過解決實際問題的過程,在實際情境中能根據(jù)不一樣的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù),發(fā)展學(xué)生思維本事。

  3、經(jīng)過一些實際生活應(yīng)用,讓學(xué)生感受到學(xué)習(xí)函數(shù)表示的必要性;經(jīng)過函數(shù)的解析式與圖象的結(jié)合滲透數(shù)形結(jié)合思想。

  三、教學(xué)問題診斷分析

 ?。?)初中已經(jīng)接觸過函數(shù)的三種表示法:解析法、列表法和圖象法、高中階段重點是讓學(xué)生在了解三種表示法各自優(yōu)點的基礎(chǔ)上,使學(xué)生會根據(jù)實際情境的需要選擇恰當(dāng)?shù)谋硎痉椒?。所以,教學(xué)中應(yīng)當(dāng)多給出一些具體問題,讓學(xué)生在比較、選擇函數(shù)模型表示方式的過程中,加深對函數(shù)概念的整體理解,而不再誤以為函數(shù)都是能夠?qū)懗鼋馕鍪降摹?/p>

 ?。?)分段函數(shù)很多存在,但比較繁瑣。一方面,要加強用分段函數(shù)模型刻畫實際問題的實踐,另一方面,還能夠經(jīng)過動畫模擬,讓學(xué)生體驗到,分段函數(shù)的問題應(yīng)當(dāng)分段解決,然后再綜合。這也為下一步研究分段函數(shù)的單調(diào)性等性質(zhì)打下伏筆。

  四、本節(jié)課的教法特點以及預(yù)期效果分析

 ?。ㄒ唬⒈竟?jié)課的教法特點

  根據(jù)教學(xué)資料,結(jié)合學(xué)生的具體情景,我采用了學(xué)生自主探究和教師啟發(fā)引導(dǎo)相結(jié)合的教學(xué)方式。在整個的教學(xué)過程中讓學(xué)生盡可能地動手、動腦,調(diào)動學(xué)生進(jìn)取性,充分地參與學(xué)習(xí)的全過程。倡導(dǎo)學(xué)生主動參與、樂于探究、勤于動手,逐步培養(yǎng)學(xué)生能夠利用函數(shù)來處理信息的本事。

 ?。ǘ?、本節(jié)課預(yù)期效果

  1、經(jīng)過具體的實例,讓學(xué)生體會函數(shù)三種表示法的優(yōu)、缺點。

  創(chuàng)造問題情景這種情景的創(chuàng)設(shè)以具體事例出發(fā),印象深刻。所以在引入時先從函數(shù)的三要素入手,強調(diào)要素之一對應(yīng)關(guān)系,然后給出三個具體實例:

 ?。?)炮彈發(fā)射時,距離地面的高度隨時間變化的情景;

  (2)用圖表的形式給出臭氧層空洞的面積與時間的關(guān)系;

 ?。?)恩格爾系數(shù)的變化情景。

  指出每種對應(yīng)分別以怎樣的形式展現(xiàn)。引出函數(shù)的表示方法這一課題。因為我們這節(jié)課的重點是讓學(xué)生在實際情景中,會根據(jù)不一樣的需要選擇恰當(dāng)?shù)谋硎痉椒?。會選擇的前提是理解,這些完全靠學(xué)生的現(xiàn)實經(jīng)驗,讓學(xué)生自我去發(fā)現(xiàn)各自的優(yōu)劣。這為第一道例題打下基礎(chǔ)。

  例1經(jīng)過具體例子,讓學(xué)生用三種不一樣的表示方法來表示的同一個函數(shù),進(jìn)一步理解函數(shù)概念。把問題交給學(xué)生,學(xué)生獨立完成,并自我檢查發(fā)現(xiàn)問題,加深學(xué)生對三種表示法的深刻理解。學(xué)生思考函數(shù)表示法的規(guī)定。注意本例的設(shè)問,此處“”有三種含義,它能夠是解析表達(dá)式,能夠是圖象,也能夠是對應(yīng)值表。

  由于這個函數(shù)的圖象由一些離散的點組成,與以前學(xué)習(xí)過的一次函數(shù)、二次函數(shù)的圖象是連續(xù)的曲線不一樣。經(jīng)過本例,進(jìn)一步讓學(xué)生感受到,函數(shù)概念中的對應(yīng)關(guān)系、定義域、值域是一個整體、函數(shù)y=5x不一樣于函數(shù)y=5x(x∈{1,2,3,4,5}),前者的圖象是(連續(xù)的)直線,而后者是5個離散的點。由此認(rèn)識到:“函數(shù)圖象既能夠是連續(xù)的曲線,也能夠是直線、折線、離散的點,等等?!辈⒚鞔_:如何確定一個圖形是否是函數(shù)圖象方法

  2、讓學(xué)生會根據(jù)不一樣的實例選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù)

  例2用表格法表示了函數(shù)。要“對這三位運動員的成績做一個分析”不太方便,所以需要改變函數(shù)表示的方法,選擇圖象法比較恰當(dāng)。教學(xué)中,先不必直接把圖象法告訴學(xué)生,能夠讓學(xué)生說說自我是如何分析的,選擇了什么樣的方法來表示這三個函數(shù)、經(jīng)過比較各種不一樣的表示方法,達(dá)成共識:用圖象法比較好。培養(yǎng)學(xué)生根據(jù)實際需要選擇恰當(dāng)?shù)暮瘮?shù)表示法的本事。

  學(xué)生經(jīng)過觀察、思考獲得結(jié)論、比如總體水平(朱啟南成績好)、變化趨勢(劉天佑的成績在逐步提高)、與運動員的平均分的比較,等等。培養(yǎng)學(xué)生的觀察本事、獲取有用信息的本事。同時要求學(xué)生注意圖中的虛線不是函數(shù)圖象的組成部分,之所以用虛線連接散點,主要是為了區(qū)分這三個函數(shù),直觀感受三個函數(shù)的圖象具有整體性,也便于分析成績情景,加以比較。

  3、經(jīng)過具體的實例,了解分段函數(shù)及其表示

  生活中有很多能夠用分段函數(shù)描述的實際問題,如出租車的計費、個人所得稅納稅稅額等等。經(jīng)過例3的教學(xué),讓學(xué)生了解分段函數(shù)及其表示。為了便于學(xué)生理解,給出了實際情景的模擬。能夠使函數(shù)在數(shù)與形兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生經(jīng)過函數(shù)的學(xué)習(xí)更好地體會數(shù)形結(jié)合的數(shù)學(xué)思想方法。

高一數(shù)學(xué)教學(xué)計劃7

  一、活動開展情景

  在我縣,今年的教學(xué)主體是“有效教學(xué)”,為此,我組在開展教研活動時也是緊緊圍繞這一主題進(jìn)行開的。在本學(xué)期內(nèi),我組主要開展過以下活動:

  1、備課。本學(xué)期備課的形式主要是一個人備課為主,團(tuán)體備課為輔。具體流程為個人備課→團(tuán)體備課→個人備課,簡稱三級備課。

  2、公開課。本學(xué)期的公開課主要是以每位教師不低于一次公開課的標(biāo)準(zhǔn)來執(zhí)行的。公開課的開展形式與以往也有所不一樣,以往的公開課僅有聽課和評課兩個環(huán)節(jié),忽視了說課環(huán)節(jié)。但本學(xué)期卻是把以往忽視了的說課環(huán)節(jié)也補上了,流程上將說課環(huán)節(jié)放在課前,構(gòu)成了課前說課→聽課授課→評課議課的模式。

  3、課賽。本學(xué)期我組共參加過校外課賽一人次,獲得三等獎一人次。校內(nèi)不設(shè)課賽活動。

  4、示范課。本學(xué)期我組上過示范課共計四人次,校內(nèi)示范課三人次,校外示范課1人次。

  5、數(shù)學(xué)競賽。本學(xué)期我組共組織開展過數(shù)學(xué)競賽一次,參賽學(xué)生達(dá)50余人,占全校學(xué)生總數(shù)的近10%。向?qū)W校申請獲得專項資金710元,受益學(xué)生37人。頒發(fā)“優(yōu)秀輔導(dǎo)教師”榮譽稱號三人次。

  6、學(xué)校文化建設(shè)。本學(xué)期我組特向?qū)W校申請宣傳欄展板一塊(近3平方米),在宣傳和展

  示我組的相關(guān)活動照片以及文件精神的同時,也在完善我校的學(xué)校文化建設(shè)。

  7、階段性教學(xué)質(zhì)量反饋座談會。本學(xué)期共開展過兩次這類會議。

  8、其他活動。外出培訓(xùn)學(xué)習(xí)四人次,網(wǎng)絡(luò)培訓(xùn)學(xué)習(xí)6人次。全組成員外出交流學(xué)習(xí)兩次,其他派代表外出交流學(xué)習(xí)三次。

  二、活動成效

  1、促進(jìn)了教師隊伍的建設(shè)和完善。本學(xué)期我組教師在以團(tuán)隊合作及個人努力拼搏相得益彰的結(jié)合下,經(jīng)過以上一系列的活動加強了師師之間、師生之間、生生之間的溝通協(xié)調(diào),再加以學(xué)校對本組的大力支持,本學(xué)期我組對教師隊伍的建設(shè)取得了必須的成效。

  2、開拓了教師的視野,提升了團(tuán)隊的師資力量。經(jīng)過外出培訓(xùn)學(xué)習(xí),網(wǎng)絡(luò)學(xué)習(xí)以及與其他學(xué)校開展教研交流活動,不但開拓了我組教師的視野,同時也提升了我組教師的專業(yè)素養(yǎng)。

  3、促進(jìn)教師的個人成長與團(tuán)隊合作精神。經(jīng)過開展團(tuán)體備課、公開課、示范課以及課賽等活動,不但促進(jìn)了我組教師的個人成長,同時也加強了我組的團(tuán)隊合作精神。

  4、構(gòu)成了良好的競爭觀念和大局意識。經(jīng)過開展課賽活動和設(shè)立“優(yōu)秀輔導(dǎo)教師”獎,在團(tuán)隊之間有了競爭觀念,同時也經(jīng)過績效的捆綁使得組內(nèi)成員有了大局意識。

  三、存在問題

  1、缺乏領(lǐng)導(dǎo)藝術(shù)和管理本事。在我校數(shù)學(xué)組成員中,我屬最年輕的數(shù)學(xué)教師之一,自然在管理的過程中對很多老教師心存芥蒂,這是心理隔閡問題;很難做到在對老教師十分尊重的同時又讓他們對自我的主張很服從,這是本事問題,也是領(lǐng)導(dǎo)藝術(shù)問題;很難做到讓年輕教師彰顯個性的同時又讓他們能夠嚴(yán)格約束自我,這是溝通問題。

  2、個人精力有限。本人在擔(dān)任我校數(shù)學(xué)教研組的同時還承擔(dān)著兩個畢業(yè)班的數(shù)學(xué)教學(xué)工作和一個畢業(yè)班的班主任工總,工作任務(wù)較為繁重。所以,各項工作難免會出現(xiàn)百密而一疏的漏洞。

  3、缺乏組織和管理實踐經(jīng)驗。參加工作才一年半就開始擔(dān)任這樣的職務(wù),組織管理一群比自我大的成年人,這是零起點,無從談及組織和管理經(jīng)驗。唯有摸著石頭過河,邊工作邊總結(jié),逐步積累這方面的實踐經(jīng)驗。

  四、努力方向

  對于目前存在的問題,日后改善的措施還是以人為本,尊重同事,在虛心向經(jīng)驗豐富異常以往從事過這方面工作的老教師請教的同時,也要加強與年輕教師的溝通,多聽取他們的意見提議,努力提高自我的業(yè)務(wù)水平和管理本事,不斷學(xué)習(xí)新的管理理念,提高自我的管理藝術(shù)和組織本事。

高一數(shù)學(xué)教學(xué)計劃8

  教學(xué)目標(biāo) :

  (1)理解子集、真子集、補集、兩個集合相等概念;

  (2)了解全集、空集的意義,

  (3)掌握有關(guān)的符號及表示方法,會用它們正確表示一些簡單的集合,培養(yǎng)學(xué)生的符號表示的能力;

  (4)會求已知集合的子集、真子集,會求全集中子集在全集中的補集;

  (5)能判斷兩集合間的包含、相等關(guān)系,并會用符號及圖形(文氏圖)準(zhǔn)確地表示出來,培養(yǎng)學(xué)生的數(shù)學(xué)結(jié)合的數(shù)學(xué)思想;

  (6)培養(yǎng)學(xué)生用集合的觀點分析問題、解決問題的能力.

  教學(xué)重點:子集、補集的概念

  教學(xué)難點 :弄清元素與子集、屬于與包含之間的區(qū)別

  教學(xué)用具:幻燈機

  教學(xué)過程 設(shè)計

  (一)導(dǎo)入 新課

  上節(jié)課我們學(xué)習(xí)了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識.

  【提出問題】(投影打出)

  已知 , , ,問:

  1.哪些集合表示方法是列舉法.

  2.哪些集合表示方法是描述法.

  3.將集M、集從集P用圖示法表示.

  4.分別說出各集合中的元素.

  5.將每個集合中的元素與該集合的關(guān)系用符號表示出來.將集N中元素3與集M的關(guān)系用符號表示出來.

  6.集M中元素與集N有何關(guān)系.集M中元素與集P有何關(guān)系.

  【找學(xué)生回答】

  1.集合M和集合N;(口答)

  2.集合P;(口答)

  3.(筆練結(jié)合板演)

  4.集M中元素有-1,1;集N中元素有-1,1,3;集P中元素有-1,1.(口答)

  5. , , , , , , , (筆練結(jié)合板演)

  6.集M中任何元素都是集N的元素.集M中任何元素都是集P的元素.(口答)

  【引入】在上面見到的集M與集N;集M與集P通過元素建立了某種關(guān)系,而具有這種關(guān)系的兩個集合在今后學(xué)習(xí)中會經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個集合間關(guān)系的問題.

  (二)新授知識

  1.子集

  (1)子集定義:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A。

  記作: 讀作:A包含于B或B包含A

  當(dāng)集合A不包含于集合B,或集合B不包含集合A時,則記作:A B或B A.

  性質(zhì):① (任何一個集合是它本身的子集)

 ?、?(空集是任何集合的子集)

  【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?

  【解疑】不能把A是B的子集解釋成A是由B中部分元素所組成的集合.

  因為B的子集也包括它本身,而這個子集是由B的全體元素組成的.空集也是B的子集,而這個集合中并不含有B中的元素.由此也可看到,把A是B的子集解釋成A是由B的部分元素組成的集合是不確切的.

  (2)集合相等:一般地,對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,記作A=B。

  例: ,可見,集合 ,是指A、B的所有元素完全相同.

  (3)真子集:對于兩個集合A與B,如果 ,并且 ,我們就說集合A是集合B的真子集,記作: (或 ),讀作A真包含于B或B真包含A。

  【思考】能否這樣定義真子集:“如果A是B的子集,并且B中至少有一個元素不屬于A,那么集合A叫做集合B的真子集.”

  集合B同它的真子集A之間的關(guān)系,可用文氏圖表示,其中兩個圓的內(nèi)部分別表示集合A,B.

  【提問】

  (1) 寫出數(shù)集N,Z,Q,R的包含關(guān)系,并用文氏圖表示。

  (2) 判斷下列寫法是否正確

  ① A ② A ③ ④A A

  性質(zhì):

  (1)空集是任何非空集合的真子集。若 A ,且A≠ ,則 A;

  (2)如果 , ,則 .

  例1 寫出集合 的所有子集,并指出其中哪些是它的真子集.

  解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.

  【注意】(1)子集與真子集符號的方向。

  (2)易混符號

 ?、佟?”與“ ”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如 R,{1} {1,2,3}

 ?、趝0}與 :{0}是含有一個元素0的集合, 是不含任何元素的集合。

  如: {0}。不能寫成 ={0}, ∈{0}

  例2 見教材P8(解略)

  例3 判斷下列說法是否正確,如果不正確,請加以改正.

  (1) 表示空集;

  (2)空集是任何集合的真子集;

  (3) 不是 ;

  (4) 的所有子集是 ;

  (5)如果 且 ,那么B必是A的真子集;

  (6) 與 不能同時成立.

  解:(1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;

  (2)不正確.空集是任何非空集合的真子集;

  (3)不正確. 與 表示同一集合;

  (4)不正確. 的所有子集是 ;

  (5)正確

  (6)不正確.當(dāng) 時, 與 能同時成立.

  例4 用適當(dāng)?shù)姆? , )填空:

  (1) ; ; ;

  (2) ; ;

  (3) ;

  (4)設(shè) , , ,則A B C.

  解:(1)0 0 ;

  (2) = , ;

  (3) , ∴ ;

  (4)A,B,C均表示所有奇數(shù)組成的集合,∴A=B=C.

  【練習(xí)】教材P9

  用適當(dāng)?shù)姆? , )填空:

  (1) ; (5) ;

  (2) ; (6) ;

  (3) ; (7) ;

  (4) ; (8) .

  解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

  提問:見教材P9例子

  (二) 全集與補集

  1.補集:一般地,設(shè)S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集),記作 ,即

  .

  A在S中的補集 可用右圖中陰影部分表示.

  性質(zhì): S( SA)=A

  如:(1)若S={1,2,3,4,5,6},A={1,3,5},則 SA={2,4,6};

  (2)若A={0},則 NA=N*;

  (3) RQ是無理數(shù)集。

  2.全集:

  如果集合S中含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集,全集通常用表示.

  注: 是對于給定的全集 而言的,當(dāng)全集不同時,補集也會不同.

  例如:若 ,當(dāng) 時, ;當(dāng) 時,則 .

  例5 設(shè)全集 , , ,判斷 與 之間的關(guān)系.

高一數(shù)學(xué)教學(xué)計劃9

  一、學(xué)生狀況分析

  學(xué)生整體水平一般,成績以中等為主,中上不多,后進(jìn)生也有一些。幾個班中,從上課一周來看,學(xué)生的學(xué)習(xí)進(jìn)取性還是比較高,愛問問題的同學(xué)比較多,但由于基礎(chǔ)知識不太牢固,上課效率不是很高。

  二、教材分析

  使用北師大版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)》,教材在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可理解性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點。必修1有三章(集合與函數(shù)概念;基本初等函數(shù);函數(shù)的應(yīng)用);必修2有四章(空間幾何體;點線平面間的位置關(guān)系;直線與方程;圓與方程)。

  三、教學(xué)任務(wù)

  本期授課資料為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。

  四、教學(xué)質(zhì)量目標(biāo)

  1、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),體會數(shù)學(xué)思想和方法。

  2、提高空間想象、抽象概括、推理論證、運算求解、數(shù)據(jù)處理等基本本事。

  3、提高學(xué)生提出、分析和解決問題(包括簡單的實際問題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨立獲取數(shù)學(xué)知識的本事。

  4、發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。

  5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。

  6、具有必須的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。

  五、促進(jìn)目標(biāo)達(dá)成的重點工作

  認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要資料,堅持“抓兩頭、帶中間、整體推進(jìn)”,使每個學(xué)生的數(shù)學(xué)本事都得到提高和發(fā)展。

  教學(xué)方法及推進(jìn)措施

  六、相關(guān)措施:

  高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,應(yīng)對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:

 ?。?)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。

 ?。?)集中精力打好基礎(chǔ),分項突破難點。所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點資料,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機結(jié)合。

 ?。?)培養(yǎng)學(xué)生解答考題的本事,經(jīng)過例題,從形式和資料兩方應(yīng)對所學(xué)知識進(jìn)行本事方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些本事要求。

 ?。?)讓學(xué)生經(jīng)過單元考試,檢測自我的實際應(yīng)用本事,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備

  (5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。

 ?。?)重視數(shù)學(xué)應(yīng)用意識及應(yīng)用本事的培養(yǎng)。

 ?。?)重視學(xué)生非智力因素培養(yǎng),要經(jīng)常性地鼓勵學(xué)生,增強學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,樹立勇于克服困難與戰(zhàn)勝困難的信心。

 ?。?)合理引入課題,由數(shù)學(xué)活動、故事、提問、師生交流等方式激發(fā)學(xué)生學(xué)習(xí)興趣,注意從實例出發(fā),從感性提高到理性;注意運用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

  (9)加強培養(yǎng)學(xué)生的邏輯思維本事和解決實際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

 ?。?0)抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。

 ?。?1)自始至終貫徹教學(xué)四環(huán)節(jié)(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創(chuàng)新教學(xué)方法,把學(xué)生被動理解知識轉(zhuǎn)化主動學(xué)習(xí)知識。

  七、教學(xué)進(jìn)度安排:

 ?。裕?/p>

高一數(shù)學(xué)教學(xué)計劃10

  一、指導(dǎo)思想:

  遵循“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想,使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會提高的需要。

  二、教材特點:

  我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)(A版)》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借簽、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時代性、典型性和可理解性等,具有如下特點:

  1、“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)活力。

  2、“問題性”:以恰時恰點的問題引導(dǎo)數(shù)學(xué)活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。

  3、“科學(xué)性”與“思想性”:經(jīng)過不一樣數(shù)學(xué)資料的聯(lián)系與啟發(fā),強調(diào)類比、化歸等思想方法的運用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維本事,培育理性精神。

  4、“時代性”與“應(yīng)用性”:以具有時代感和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強數(shù)學(xué)活動,發(fā)展應(yīng)用意識。

  三、教法分析:

  1、選取與資料密切相關(guān)的、典型的、豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個究竟”的沖動,以到達(dá)培養(yǎng)其興趣的目的。

  2、經(jīng)過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實改善學(xué)生的學(xué)習(xí)方式。

  3、在教學(xué)中強調(diào)類比、化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。

  四、學(xué)情分析:

  高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,夢想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長。應(yīng)對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實際本事出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫忙學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一齊就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。

  五、教學(xué)措施:

  1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和提高。

  2、注意從實例出發(fā),從感性提高到理性;注意運用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。

  3、加強培養(yǎng)學(xué)生的邏輯思維本事和解決實際問題的本事,提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。

  4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。

  5、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用本事的培養(yǎng)。

高一數(shù)學(xué)教學(xué)計劃11

  平面上的直線就是由平面直角坐標(biāo)系中的一個二元一次方程所表示的圖形 。

  教學(xué)目標(biāo)

  (1)掌握由一點和斜率導(dǎo)出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.

  (2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.

  (3)掌握直線方程各種形式之間的互化.

  (4)通過直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問題的能力.

  (5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點.

  (6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.

  教學(xué)建議

  1.教材分析

  (1)知識結(jié)構(gòu)

  由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點斜式;由直線方程的點斜式分別導(dǎo)出直線方程的斜截式和兩點式;再由兩點式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時一般式也可以轉(zhuǎn)化成特殊式.

  (2)重點、難點分析

 ?、俦竟?jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據(jù)具體條件求出直線的方程.

  解析幾何有兩項根本性的任務(wù):一個是求曲線的方程;另一個就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對以后學(xué)習(xí)用方程討論直線起著直接的作用,同時也對曲線方程的學(xué)習(xí)起著重要的作用.

  直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學(xué)生對點斜式學(xué)習(xí)的效果將直接影響后繼知識的學(xué)習(xí).

  ②本節(jié)的難點是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明.

  2.教法建議

  (1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學(xué)中各部分知識之間過渡要自然流暢,不生硬.

  (2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)曲線方程打下基礎(chǔ).

  直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時,還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點分析思路,還應(yīng)抓住這一有利時使學(xué)生學(xué)會嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時培養(yǎng)學(xué)生辯證唯物主義觀點

  (3)在強調(diào)幾種形式互化時要向?qū)W生充分揭示各種形式的特點,它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對各種形式的理解.

  (4)教學(xué)中要使學(xué)生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學(xué)中應(yīng)突出點斜式、兩點式和一般式三個教學(xué)高潮.

  求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個條件運用待定系數(shù)法和方程思想求直線方程.

  (5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個實數(shù);距離是線段的長度,是一個正實數(shù)(或非負(fù)實數(shù)).

  (6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力.

  (7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實際和其它學(xué)科,教師要注意引導(dǎo),增強學(xué)生用數(shù)學(xué)的意識和能力.

  (8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上.

高一數(shù)學(xué)教學(xué)計劃12

  教學(xué)分析

  課本從學(xué)生熟悉的集合(自然數(shù)的集合、有理數(shù)的集合等)出發(fā),通過類比實數(shù)間的大小關(guān)系引入集合間的關(guān)系,同時,結(jié)合相關(guān)內(nèi)容介紹子集等概念.在安排這部分內(nèi)容時,課本注重體現(xiàn)邏輯思考的方法,如類比等.

  值得注意的問題:在集合間的關(guān)系教學(xué)中,建議重視使用Venn圖,這有助于學(xué)生通過體會直觀圖示來理解抽象概念;隨著學(xué)習(xí)的深入,集合符號越來越多,建議教學(xué)時引導(dǎo)學(xué)生區(qū)分一些容易混淆的關(guān)系和符號,例如∈與?的區(qū)別.

  三維目標(biāo)

  1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關(guān)系,提高利用類比發(fā)現(xiàn)新結(jié)論的能力.

  2.在具體情境中,了解空集的含義,掌握并能使用Venn圖表達(dá)集合的關(guān)系,加強學(xué)生從具體到抽象的思維能力,樹立數(shù)形結(jié)合的思想.

  重點難點

  教學(xué)重點:理解集合間包含與相等的含義.

  教學(xué)難點:理解空集的含義.

  課時安排

  1課時

  教學(xué)過程

  導(dǎo)入新課

  思路1.實數(shù)有相等、大小關(guān)系,如5=5,5<7 5="">3等等,類比實數(shù)之間的關(guān)系,你會想到集合之間有什么關(guān)系呢?(讓學(xué)生自由發(fā)言,教師不要急于作出判斷,而是繼續(xù)引導(dǎo)學(xué)生)

  欲知誰正確,讓我們一起來觀察、研探.

  思路2.復(fù)習(xí)元素與集合的關(guān)系——屬于與不屬于的關(guān)系,填空:(1)0N;(2)2Q;(3)-1.5R.

  類比實數(shù)的大小關(guān)系,如5<7,2≤2,試想集合間是否有類似的“大小”關(guān)系呢?(答案:(1)∈;(2)?;(3)∈)

  推進(jìn)新課

  提出問題

  (1)觀察下面幾個例子:

 ?、貯={1,2,3},B={1,2,3,4,5};

 ?、谠O(shè)A為國興中學(xué)高一(3)班男生的全體組成的集合,B為這個班學(xué)生的全體組成的集合;

 ?、墼O(shè)C={x|x是兩條邊相等的三角形},D={x|x是等腰三角形};

 ?、蹺={2,4,6},F(xiàn)={6,4,2}.

  你能發(fā)現(xiàn)兩個集合間有什么關(guān)系嗎?

  (2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同樣是子集,有什么區(qū)別?

  (3)結(jié)合例子④,類比實數(shù)中的結(jié)論:“若a≤b,且b≤a,則a=b”,在集合中,你發(fā)現(xiàn)了什么結(jié)論?

  (4)按升國旗時,每個班的同學(xué)都聚集在一起站在旗桿附近指定的區(qū)域內(nèi),從樓頂向下看,每位同學(xué)是哪個班的,一目了然.試想一下,根據(jù)從樓頂向下看的,要想直觀表示集合,聯(lián)想集合還能用什么表示?

  (5)試用Venn圖表示例子①中集合A和集合B.

  (6)已知A?B,試用Venn圖表示集合A和B的關(guān)系.

  (7)任何方程的解都能組成集合,那么x2+1=0的實數(shù)根也能組成集合,你能用Venn圖表示這個集合嗎?

  (8)一座房子內(nèi)沒有任何東西,我們稱為這座房子是空房子,那么一個集合沒有任何元素,應(yīng)該如何命名呢?

  (9)與實數(shù)中的結(jié)論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什么結(jié)論?

  活動:教師從以下方面引導(dǎo)學(xué)生:

  (1)觀察兩個集合間元素的特點.

  (2)從它們含有的元素間的關(guān)系來考慮.規(guī)定:如果A B,但存在x∈B,且x A,我們稱集合A是集合B的真子集,記作A B(或B A).

  (3)實數(shù)中的“≤”類比集合中的 .

  (4)把指定位置看成是由封閉曲線圍成的,學(xué)生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內(nèi).教師指出:為了直觀地表示集合間的關(guān)系,我們常用平面上封閉曲線的內(nèi)部代表集合,這種圖稱為Venn圖.

  (5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.

  (6)分類討論:當(dāng)A B時,A B或A=B.

  (7)方程x2+1=0沒有實數(shù)解.

  (8)空集記為 ,并規(guī)定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).

  (9)類比子集.

  討論結(jié)果:

  (1)①集合A中的元素都在集合B中;

 ?、诩螦中的元素都在集合B中;

  ③集合C中的元素都在集合D中;

 ?、芗螮中的元素都在集合F中.

  可以發(fā)現(xiàn):對于任意兩個集合A,B有下列關(guān)系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.

  (2)例子①中A B,但有一個元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.

  (3)若A B,且B A,則A=B.

  (4)可以把集合中元素寫在一個封閉曲線的.內(nèi)部來表示集合.

  (5)如圖1121所示表示集合A,如圖1122所示表示集合B.

  圖1-1-2-1 圖1-1-2-2

  (6)如圖1-1-2-3和圖1-1-2-4所示.

  圖1-1-2-3 圖1-1-2-4

  (7)不能.因為方程x2+1=0沒有實數(shù)解.

  (8)空集.

高一數(shù)學(xué)教學(xué)計劃12篇相關(guān)文章:

三年級數(shù)學(xué)上冊教學(xué)計劃12篇 人教版三年級上冊數(shù)學(xué)教學(xué)計劃

高二數(shù)學(xué)下學(xué)期教學(xué)計劃6篇(高二數(shù)學(xué)下學(xué)期個人教學(xué)計劃)

高一數(shù)學(xué)教學(xué)工作總結(jié)12篇 個人教學(xué)工作總結(jié)數(shù)學(xué)

人教版二年級數(shù)學(xué)下冊的教學(xué)計劃12篇(人教版二年級數(shù)學(xué)下冊教學(xué)計劃及進(jìn)度)

三年級下冊數(shù)學(xué)的教學(xué)計劃12篇(三年級下冊數(shù)學(xué)教學(xué)計劃安排表)

幼兒大班數(shù)學(xué)教學(xué)計劃3篇(幼兒園大班數(shù)學(xué)教育教學(xué)計劃)

高一年級的教學(xué)計劃11篇(高一教學(xué)工作計劃)

幼兒小班數(shù)學(xué)教學(xué)計劃3篇(小班數(shù)學(xué)教學(xué)學(xué)期計劃)

八年級數(shù)學(xué)上冊教學(xué)計劃12篇 北師大八年級數(shù)學(xué)教學(xué)計劃

七年級的數(shù)學(xué)教學(xué)計劃12篇 七年級數(shù)學(xué)教學(xué)計劃上冊人教版