下面是范文網(wǎng)小編收集的一元二次方程復習教案3篇 一元二次方程詳細教案,供大家參考。
一元二次方程復習教案1
教學目標
知識與技能目標
1、構建本章的部分知識框圖。
2、復習一元二次方程的概念、解法。
過程與方法
1、通過對本章方程解法的復習,進一步提高學生的運算能力。
2、在解一元二次方程的過程中體會轉化等數(shù)學思想。
情感、態(tài)度與價值觀
通過師生共同的活動,使學生在交流和反思的過程中建立本章的知識體系,從而體驗學習數(shù)學的.成就感.
教學重點
1、一元二次方程的概念
2、一元二次方程的四種解法:直接開平方法、配方法、公式法、因式分解法;
教學難點
解法的靈活選擇;例4和例5的解法。
教學過程
一、創(chuàng)設情境
導入新課
問題:本章中,我們有哪些收獲?(教師點撥引導學生構建本章部分知識框圖)
二、師生互動
共同探究
1、復習概念
例1
例2
2、四種解法
?。?)
解法及其關系
?。?)
根的形式
x1=3
x2=4
(3)熟悉解法
例3用四種解法分別解此方程
?。?)方法優(yōu)選
3、方法補充
例4
4、解法糾錯
例5
解關于x的方程
錯誤解法
正確解法
三、小結反思
提煉思想
我們有哪些收獲?解方程的思想方法是什么?
四、布置作業(yè)
鞏固提高
一元二次方程復習教案2
復習目標:
1、能說出一元二次方程及其相關概念。
2、能熟練應用配方法、公式法、分解因式法解簡單的一元二次方程,并在解一元二次方程的過程中體會轉化等數(shù)學思想。
復習重難點:一元二次方程的解法
教學過程
一、情景導入
前面我們復習了一元一次方程與二元一次方程組的解法,大家掌握得很不錯,請同學解方程x(x-1)=1,(學生略作思考后,示意不會做)忘了吧?看來好多學生都已經(jīng)忘了如何解一元二次方程呢?那么這節(jié)課我們就一起來復習一元二次方程的解法(板書課題)
二、復習指導(學生按照復習提綱解決問題,師做簡單的`板書準備后,巡視指導,特別要注意幫助有困難的同學,了解學生的情況,為展示歸納做準備。)
復習提綱
1.-元二次方程的定義:只含有_______叫做一元二次方程。
2.一元二次方程的一般形式是________(a_______0),其中ax2叫做_______項,a是_______,bx叫做_______,b是_______,c叫做_______項。
3.一元二次方程的解法:
(1)用直接開平方法解方程(2x+1)2=9
形如x2=p(p≥0)的方程的根為________。
(2)用配方法解方程x2+2x=3
用配方法解方程步驟: , , , 。
(3)用求根公式法解方程x2-3x-5=0 ,x2-3x+5=0。
一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=________,根x= 。
(1)當△>0時,方程有兩個_______的實數(shù)根。
(2)當△=0時,方程有兩個_______的實數(shù)根。
(3)當△<0時,_______。
三、展示歸納
1、教師抽有困難的學生逐題匯報復習結果,學生說教師板書。
2、教師發(fā)動全班學生進行評價,補充,完善。
3、教師畫龍點睛的強調(diào)。
四、變式練習(1、2、4題讓學生說出理由,3題讓學生觀察方程的特點可發(fā)現(xiàn):(1)可用直接開平方法;(2)用配方法或公式法;(3)可用公式法;(4)方程都有共同的因式(x-3),故可用因式分解法。)
1、判斷下列哪些方程是一元二次方程?
?。?)4x2-16x+15=0 (2) 2x2-3=0 (3)ax2+bx+c=0
2、請將方程(x+1)(2-x)=1化為一般形式_______。
3、解下列方程:
(1) (x-3)2-9=0; (2) x2-2x=5;
(3) x2-4x+2=0; (4) 2(x-3)=3x(x-3)。
4、不解方程,判斷下列方程根的情況。
(1)2x2-5x-3=0 (2)x2+6x+9=0 (3)x2-4x+5=0
五、課堂總結
請談談本節(jié)課的收獲與困惑。(學生自主小結歸納,將本章知識內(nèi)化為自己的東西,并提高歸納小結的能力。)
六、布置作業(yè)
一元二次方程復習教案3
一、復習目標:
1、能說出一元二次方程及其相關概念,;
2、能熟練應用配方法、公式法、分解因式法解簡單的一元二次方程,并在解一元二次方程的過程中體會轉化等數(shù)學思想。
3、能靈活應用一元二次方程的知識解決相關問題,能根據(jù)具體問題的實際意義檢驗結果的合理性,進一步培養(yǎng)學生分析問題、解決問題的意識和能力。
二、復習重難點:
重點:一元二次方程的解法和應用.
難點:應用一元二次方程解決實際問題的方法.
三、知識回顧:
1、一元二次方程的定義:
2、一元二次方程的常用解法有:
配方法的一般過程是怎樣的?
3、一元二次方程在生活中有哪些應用?請舉例說明。
4、利用方程解決實際問題的關鍵是。
在解決實際問題的過程中,怎樣判斷求得的結果是否合理?請舉例說明。
四、例題解析:
例1、填空
1、當m時,關于x的方程(m-1)+5+mx=0是一元二次方程.
2、方程(m2-1)x2+(m-1)x+1=0,當m時,是一元二次方程;當m時,是一元一次方程.
3、將一元二次方程x2-2x-2=0化成(x+a)2=b的形式是;此方程的根是.
4、用配方法解方程x2+8x+9=0時,應將方程變形為()
A.(x+4)2=7B.(x+4)2=-9
C.(x+4)2=25D.(x+4)2=-7
學習內(nèi)容學習隨記
例2、解下列一元二次方程
(1)4x2-16x+15=0(用配方法解)(2)9-x2=2x2-6x(用分解因式法解)
(3)(x+1)(2-x)=1(選擇適當?shù)姆椒ń?
例3、1、新竹文具店以16元/支的'價格購進一批鋼筆,根據(jù)市場調(diào)查,如果以20元/支的價格銷售,每月可以售出200支;而這種鋼筆的售價每上漲1元就少賣10支.現(xiàn)在商店店主希望銷售該種鋼筆月利潤為1350元,則該種鋼筆該如何漲價?此時店主該進貨多少?
2、如圖,在Rt△ACB中,∠C=90°,AC=6m,BC=8m,點P、Q同時由A、B兩點出發(fā)分別沿AC,BC方向向點C勻速運動,它們的速度都是1m/s,幾秒后△PCQ的面積為Rt△ACB面積的一半?
一元二次方程復習教案3篇 一元二次方程詳細教案相關文章:
★ 《我要的是葫蘆》的優(yōu)秀教案7篇(我要的是葫蘆優(yōu)質(zhì)課教案第二課時)
★ 《按規(guī)律排序》中班教案12篇(按規(guī)律排序中班優(yōu)秀教案)
★ 人教版二年級下冊卡羅爾和她的小貓教案3篇(卡羅爾和她的小貓教學設計)
★ 認識數(shù)字8教案12篇 書寫數(shù)字8的教學教案
★ 小班認識數(shù)字教案5篇 數(shù)字寶寶小班教案