亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

數學高一優(yōu)秀教案【精品10篇】

時間:2023-07-21 14:40:43 教案

  【導語】本文是網友“g255”收集的數學高一優(yōu)秀教案(共10篇),供大家參閱。

數學高一優(yōu)秀教案

高一數學必修一教案 篇1

  一、教材

  首先談談我對教材的理解,《兩條直線平行與垂直的判定》是人教A版高中數學必修2第三章的內容,本節(jié)課的內容是兩條直線平行與垂直的判定的推導及其應用,學生對于直線平行和垂直的概念已經十分熟悉,并且在上節(jié)課學習了直線的傾斜角與斜率,為本節(jié)課的學習打下了基礎。

  二、學情

  教材是我們教學的工具,是載體。但我們的教學是要面向學生的,高中學生本身身心已經趨于成熟,管理與教學難度較大,那么為了能夠成為一個合格的高中教師,深入了解所面對的學生可以說是必修課。本階段的學生思維能力已經非常成熟,能夠有自己獨立的思考,所以應該積極發(fā)揮這種優(yōu)勢,讓學生獨立思考探索。

  三、教學目標

  根據以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:

  (一)知識與技能

  掌握兩條直線平行與垂直的判定,能夠根據其判定兩條直線的位置關系。

  (二)過程與方法

  在經歷兩條直線平行與垂直的判定過程中,提升邏輯推理能力。

  (三)情感態(tài)度價值觀

  在猜想論證的過程中,體會數學的嚴謹性。

  四、教學重難點

  我認為一節(jié)好的數學課,從教學內容上說一定要突出重點、突破難點。而教學重點的確立與我本節(jié)課的內容肯定是密不可分的。那么根據授課內容可以確定本節(jié)課的教學重點是:兩條直線平行與垂直的判定。本節(jié)課的教學難點是:兩條直線平行與垂直的判定的推導。

  五、教法和學法

  現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發(fā)點。根據這一教學理念,結合本節(jié)課的內容特點和學生的年齡特征,本節(jié)課我采用講授法、練習法、小組合作等教學方法。

  六、教學過程

  下面我將重點談談我對教學過程的設計。

  (一)新課導入

  首先是導入環(huán)節(jié),那么我采用復習導入,回顧上節(jié)課所學的直線的傾斜角與斜率并順勢提問:能否通過直線的斜率,來判斷兩條直線的位置關系呢?

  利用上節(jié)課所學的知識進行導入,很好的克服學生的畏難情緒。

  (二)新知探索

  接下來是教學中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、啟發(fā)法等。

高一數學必修一教案 篇2

  數學課堂教學

  三維目標的具體內容和層次劃分

  請闡述數學課堂教學三維目標的具體內容和層次劃分

  知識與技能掌握應用,既是課堂教學的出發(fā)點,又是課堂教學的歸宿。教與學,都要通過知識與技能來體現的。那么,什么是三維目標內容呢?

  所謂三維目標是是指:“知識與技能”,“過程和方法”、“情感、態(tài)度、價值觀”。

  知識與技能:既是課堂教學的出發(fā)點,又是課堂教學的歸宿。我們在教學過程中,需要學生掌握什么,哪些些問題需要重點掌握,哪些只需簡單理解;技能是會與不會的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價、知識與技能是傳統(tǒng)教學合理的內核,是我國傳統(tǒng)教育教學的優(yōu)勢,應該從傳統(tǒng)教學中繼承與發(fā)揚。新課改不是不要雙基,而是不要過度的強調雙基,而舍棄弱化其它有價值的東西,導致非全面、不和藹的發(fā)展。

  過程與方法:既是課堂教學的目標之一,又是課堂教學的操作系統(tǒng)。“過程和方法”維度的目標立足于讓學生會學,新課程倡導對學與教的過程的體驗、方法的選擇,是在知識與能力目標基礎上對教學目標的進一步開發(fā)。過程與方法是一個體驗的過程、發(fā)現的過程,不但可以讓學生體驗到科學發(fā)展的過程,我們更多地要讓學生掌握過程,不一定要統(tǒng)一的結果。

  情感、態(tài)度與價值觀:既是課堂教學的目標之一,又是課堂教學的動力系統(tǒng)?!扒楦?、態(tài)度和價值觀”,目標立足于讓學生樂學,新課程倡導對學與教的情感體驗、態(tài)度形成、價值觀的體現,是在知識與能力、過程與方法目標基礎上對教學目標深層次的開拓,只有學生充分的認識到他們肩負的責任,就能夠激發(fā)起他們的學習熱情,他們才會有濃厚的學習興趣,才能學有所成,將來回報社會。

  三維目標不是三個目標,也不是三種目標,是一個問題的三個方面。三維目標是三位一體不可分割的,他們是相輔相成的,相互促進的。

高一數學的教案 篇3

  和初中數學相比,高中數學的內容多,抽象性、理論性強,因為不少同學進入高中之后很不適應,特別是高一年級,進校后,代數里首先遇到的是理論性很強的函數,再加上立體幾何,空間概念、空間想象能力又不可能一下子就建立起來,這就使一些初中數學學得還不

  錯的同學不能很快地適應而感到困難,以下就怎樣學好高中數學談幾點意見和建議。

  一、首先要改變觀念。

  初中階段,特別是初中三年級,通過大量的練習,可使你的成績有明顯的提高,這是因為初中數學知識相對比較淺顯,更易于掌握,通過反復練習,提高了熟練程度,即可提高成績,既使是這樣,對有些問題理解得不夠深刻甚至是不理解的。例如在初中問a=2時,a等于什么,在中考中錯的人極少,然而進入高中后,老師問,如果a=2,且a<0,那么a等于什么,既使是重點學校的學生也會有一些同學毫不思索地回答:a=2。就是以說明了這個問題。又如,前幾年北京四中高一年級的一個同學在高一上學期期中考試以后,曾向老師提出“抗議”說:“你們平時的作業(yè)也不多,測驗也很少,我不會學”,這也正說明了改變觀念的重要性。

  高中數學的理論性、抽象性強,就需要在對知識的理解上下功夫,要多思考,多研究。

  二、提高聽課的效率是關鍵。

  學生學習期間,在課堂的時間占了一大部分。因此聽課的效率如何,決定著學習的基本狀況,提高聽課效率應注意以下幾個方面:

  1、 課前預習能提高聽課的針對性。

  預習中發(fā)現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關的舊知識,可進行補缺,以減少聽課過程中的困難;有助于提高思維能力,預習后把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;預習還可以培養(yǎng)自己的自學能力。

  2、 聽課過程中的科學。

  首先應做好課前的物質準備和精神準備,以使得上課時不至于出現書、本等物丟三落四的現象;上課前也不應做過于激烈的體育運動或看小書、下棋、打牌、激烈爭論等。以免上課后還喘噓噓,或不能平靜下來。

  其次就是聽課要全神貫注。

  全神貫注就是全身心地投入課堂學習,耳到、眼到、心到、口到、手到。

  耳到:就是專心聽講,聽老師如何講課,如何分析,如何歸納總結,另外,還要聽同學們的答問,看是否對自己有所啟發(fā)。

  眼到:就是在聽講的同時看課本和板書,看老師講課的表情,手勢和演示實驗的動作,生動而深刻的接受老師所要表達的思想。

  心到:就是用心思考,跟上老師的數學思路,分析老師是如何抓住重點,解決疑難的。

  口到:就是在老師的指導下,主動回答問題或參加討論。

  手到:就是在聽、看、想、說的基礎上劃出課文的重點,記下講課的要點以及自己的感受或有創(chuàng)新思維的見解。

  若能做到上述“五到”,精力便會高度集中,課堂所學的一切重要內容便會在自己頭腦中留下深刻的印象。

  3、 特別注意老師講課的開頭和結尾。

  老師講課開頭,一般是概括前節(jié)課的要點指出本節(jié)課要講的內容,是把舊知識和新知識聯系起來的環(huán)節(jié),結尾常常是對一節(jié)課所講知識的歸納總結,具有高度的概括性,是在理解的基礎上掌握本節(jié)知識方法的綱要。

  4、要認真把握好思維邏輯,分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。

  此外還要特別注意老師講課中的提示。

  老師講課中常常對一些重點難點會作出某些語言、語氣、甚至是某種動作的提示。

  最后一點就是作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復習,消化,思考。

  三、做好復習和總結工作。

  1、做好及時的復習。

  課完課的當天,必須做好當天的復習。

  復習的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復習:先把書,筆記合起來回憶上課老師講的內容,例題:分析問題的思路、方法等(也可邊想邊在草稿本上寫一寫)盡量想得完整些。然后打開筆記與書本,對照一下還有哪些沒記清的,把它補起來,就使得當天上課內容鞏固下來,同時也就檢查了當天課堂聽課的效果如何,也為改進聽課方法及提高聽課效果提出必要的改進措施。

  2、 做好單元復習。

  學習一個單元后應進行階段復習,復習方法也同及時復習一樣,采取回憶式復習,而后與書、筆記相對照,使其內容完善,而后應做好單元小節(jié)。

  3做好單元小結。

  單元小結內容應包括以下部分。

 ?。?)本單元(章)的知識網絡;

  (2)本章的基本思想與方法(應以典型例題形式將其表達出來);

 ?。?)自我體會:對本章內,自己做錯的典型問題應有記載,分析其原因及正確答案,應記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。

  四、關于做練習題量的問題

  有不少同學把提高數學成績的希望寄托在大量做題上。我認為這是不妥當的,我認為,“不要以做題多少論英雄”,重要的不在做題多,而在于做題的效益要高。做題的目的在于檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的結果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的`基礎上做一定量的練習是必要的。而對于中檔題,尢其要講究做題的效益,即做題后有多大收獲,這就需要在做題后進行一定的“反思”,思考一下本題所用的基礎知識,數學思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過,把它們聯系起來,你就會得到更多的經驗和教訓,更重要的是養(yǎng)成善于思考的好習慣,這將大大有利于你今后的學習。當然沒有一定量(老師布置的作業(yè)量)的練習就不能形成技能,也是不行的。

  另外,就是無論是作業(yè)還是測驗,都應把準確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是學好數學的重要問題。

  最后想說的是:“興趣”和信心是學好數學的最好的老師。這里說的“興趣”沒有將來去研究數學,做數學家的意思,而主要指的是不反感,不要當做負擔?!皞ゴ蟮膭恿Ξa生于偉大的理想”。只要明白學習數學的重要,你就會有無窮的力量,并逐步對數學感到興趣。有了一定的興趣,隨之信心就會增強,也就不會因為某次考試的成績不理想而泄氣,在不斷總結經驗和教訓的過程中,你的信心就會不斷地增強,你也就會越來越認識到“興趣”和信心是你學習中的最好的老師。

高一優(yōu)秀數學教案 篇4

  一、教學內容:橢圓的方程

  要求:理解橢圓的標準方程和幾何性質.

  重點:橢圓的方程與幾何性質.

  難點:橢圓的方程與幾何性質.

  二、點:

  1、橢圓的定義、標準方程、圖形和性質

  定 義

  第一定義:平面內與兩個定點 )的點的軌跡叫作橢圓,這兩個定點叫做橢圓的焦點,兩焦點間的距離叫做橢圓的焦距

  第二定義:

  平面內到動點距離與到定直線距離的比是常數e.(0

  標準方程

  焦點在x軸上

  焦點在y軸上

  圖 形

  焦點在x軸上

  焦點在y軸上

  性 質

  焦點在x軸上

  范 圍:

  對稱性: 軸、 軸、原點.

  頂點: , .

  離心率:e

  概念:橢圓焦距與長軸長之比

  定義式:

  范圍:

  2、橢圓中a,b,c,e的關系是:(1)定義:r1+r2=2a

 ?。?)余弦定理: + -2r1r2cos(3)面積: = r1r2 sin ?2c y0 (其中P( )

  三、基礎訓練:

  1、橢圓 的標準方程為 ,焦點坐標是 ,長軸長為2,短軸長為2、橢圓 的值是3或5;

  3、兩個焦點的坐標分別為 ;

  4、已知橢圓 上一點P到橢圓一個焦點 的距離是7,則點P到另一個焦點5、設F是橢圓的一個焦點,B1B是短軸, ,則橢圓的離心率為6、方程 =10,化簡的結果是 ;

  滿足方程7、若橢圓短軸上的兩個三等分點與兩個焦點構成一個正方形,則橢圓的離心率為

  8、直線y=kx-2與焦點在x軸上的橢圓9、在平面直角坐標系 頂點 ,頂點 在橢圓 上,則10、已知點F是橢圓 的右焦點,點A(4,1)是橢圓內的一點,點P(x,y)(x≥0)是橢圓上的一個動點,則 的最大值是 8 .

  【典型例題】

  例1、(1)已知橢圓的中心在原點,焦點在坐標軸上,長軸長是短軸長的3倍,短軸長為4,求橢圓的方程.

  解:設方程為 .

  所求方程為

  (2)中心在原點,焦點在x軸上,右焦點到短軸端點的距離為2,到右頂點的距離為1,求橢圓的方程.

  解:設方程為 .

  所求方程為(3)已知三點P,(5,2),F1 (-6,0),F2 (6,0).設點P,F1,F2關于直線y=x的對稱點分別為 ,求以 為焦點且過點 的橢圓方程 .

  解:(1)由題意可設所求橢圓的標準方程為 ∴所以所求橢圓的標準方程為(4)求經過點M( , 1)的橢圓的標準方程.

  解:設方程為

  例2、如圖所示,我國發(fā)射的第一顆人造地球衛(wèi)星運行軌道是以地心(地球的中心) 為一個焦點的橢圓,已知它的近地點A(離地面最近的點)距地面439km,遠地點B(離地面最遠的點)距地面2384km,并且 、A、B在同一直線上,設地球半徑約為6371km,求衛(wèi)星運行的軌道方程 (精確到1km).

  解:建立如圖所示直角坐標系,使點A、B、 在 軸上,

  則 =OA-O = A=6371+439=6810

  解得 =, =

  衛(wèi)星運行的軌道方程為

  例3、已知定圓

  分析:由兩圓內切,圓心距等于半徑之差的絕對值 根據圖形,用符號表示此結論:

  上式可以變形為 ,又因為 ,所以圓心M的軌跡是以P,Q為焦點的橢圓

  解:知圓可化為:圓心Q(3,0),

  設動圓圓心為 ,則 為半徑 又圓M和圓Q內切,所以 ,

  即 ,故M的軌跡是以P,Q為焦點的橢圓,且PQ中點為原點,所以 ,故動圓圓心M的軌跡方程是:

  例4、已知橢圓的焦點是 |和|(1)求橢圓的方程;

 ?。?)若點P在第三象限,且∠ =120°,求 .

  選題意圖:綜合考查數列與橢圓標準方程的基礎知識,靈活運用等比定理進行解題.

  解:(1)由題設| |=2| |=4

  ∴ , 2c=2, ∴b=∴橢圓的方程為 .

 ?。?)設∠ ,則∠ =60°-θ

  由正弦定理得:

  由等比定理得:

  整理得: 故

  說明:曲線上的點與焦點連線構成的三角形稱曲線三角形,與曲線三角形有關的問題常常借助正(余)弦定理,借助比例性質進行處理.對于第二問還可用后面的幾何性質,借助焦半徑公式余弦定理把P點橫坐標先求出來,再去解三角形作答

  例5、如圖,已知一個圓的圓心為坐標原點,半徑為2,從這個圓上任意一點P向 軸作垂線段PP?@,求線段PP?@的中點M的軌跡(若M分 PP?@之比為 ,求點M的軌跡)

  解:(1)當M是線段PP?@的中點時,設動點 ,則 的坐標為

  因為點 在圓心為坐標原點半徑為2的圓上,

  所以有 所以點

 ?。?)當M分 PP?@之比為 時,設動點 ,則 的坐標為

  因為點 在圓心為坐標原點半徑為2的圓上,所以有 ,

  即所以點

  例6、設向量 =(1, 0), =(x+m) +y =(x-m) +y + (I)求動點P(x,y)的軌跡方程;

  (II)已知點A(-1, 0),設直線y= (x-2)與點P的軌跡交于B、C兩點,問是否存在實數m,使得 ?若存在,求出m的值;若不存在,請說明理由.

  解:(I)∵ =(1, 0), =(0, 1), =6

  上式即為點P(x, y)到點(-m, 0)與到點(m, 0)距離之和為6.記F1(-m, 0),F2(m, 0)(0

  ∴ PF1+PF2=6>F1F2

  又∵x>0,∴P點的軌跡是以F1、F2為焦點的橢圓的右半部分.

  ∵ 2a=6,∴a=3

  又∵ 2c=2m,∴ c=m,b2=a2-c2=9-m2

  ∴ 所求軌跡方程為 (x>0,0<m<3)

  ( II )設B(x1, y1),C(x2, y2),

  ∴∴ 而y1y2= (x1-2)? (x2-2)

  = [x1x2-2(x1+x2)+4]

  ∴ [x1x2-2(x1+x2)+4]

  = [10x1x2+7(x1+x2)+13]

  若存在實數m,使得 成立

  則由 [10x1x2+7(x1+x2)+13]=

  可得10x1x2+7(x1+x2)+10=0 ①

  再由

  消去y,得(10-m2)x2-4x+9m2-77=0 ②

  因為直線與點P的軌跡有兩個交點.

  所以

  由①、④、⑤解得m2= <9,且此時△>0

  但由⑤,有9m2-77= <0與假設矛盾

  ∴ 不存在符合題意的實數m,使得

  例7、已知C1: ,拋物線C2:(y-m)2=2px (p>0),且C1、C2的公共弦AB過橢圓C1的右焦點.

 ?。á瘢┊擜B⊥x軸時,求p、m的值,并判斷拋物線C2的焦點是否在直線AB上;

 ?。á颍┤魀= ,且拋物線C2的焦點在直線AB上,求m的值及直線AB的方程.

  解:(Ⅰ)當AB⊥x軸時,點A、B關于x軸對稱,所以m=0,直線AB的方程為x=1,從而點A的坐標為(1, )或(1,- ).

  ∵點A在拋物線上,∴

  此時C2的焦點坐標為( ,0),該焦點不在直線AB上.

  (Ⅱ)當C2的焦點在AB上時,由(Ⅰ)知直線AB的斜率存在,設直線AB的方程為y=k(x-1).

  由 (kx-k-m)2= ①

  因為C2的焦點F( ,m)在y=k(x-1)上.

  所以k2x2- (k2+2)x+ =0 ②

  設A(x1,y1),B(x2,y2),則x1+x2=

  由

 ?。?+4k2)x2-8k2x+4k2-12=0 ③

  由于x1、x2也是方程③的兩根,所以x1+x2=

  從而 = k2=6即k=±

  又m=- ∴m= 或m=-

  當m= 時,直線AB的方程為y=- (x-1);

  當m=- 時,直線AB的方程為y= (x-1).

  例8、已知橢圓C: (a>0,b>0)的左、右焦點分別是F1、F2,離心率為e.直線l:y=ex+a與x軸,y軸分別交于點A、B,M是直線l與橢圓C的一個公共點,P是點F1關于直線l的對稱點,設 = .

 ?。á瘢┳C明:(Ⅱ)若 ,△MF1F2的周長為6,寫出橢圓C的方程;

  (Ⅲ)確定解:(Ⅰ)因為A、B分別為直線l:y=ex+a與x軸、y軸的交點,所以A、B的坐標分別是A(- ,0),B(0,a).

  由 得 這里∴M = ,a)

  即 解得

  (Ⅱ)當 時, ∴a=2c

  由△MF1F2的周長為6,得2a+2c=6

  ∴a=2,c=1,b2=a2-c2=3

  故所求橢圓C的方程為

 ?。á螅逷F1⊥l ∴∠PF1F2=90°+∠BAF1為鈍角,要使△PF1F2為等腰三角形,必有PF1=F1F2,即 PF1=C.

  設點F1到l的距離為d,由

  PF1= =得: =e ∴e2= 于是

  即當(注:也可設P(x0,y0),解出x0,y0求之)

  【模擬】

  一、選擇題

  1、動點M到定點 和 的距離的和為8,則動點M的軌跡為 ( )

  A、橢圓 B、線段 C、無圖形 D、兩條射線

  2、設橢圓的兩個焦點分別為F1、F2,過F2作橢圓長軸的垂線交橢圓于點P,若△F1PF2為等腰直角三角形,則橢圓的離心率是 ( )

  A、 C、2- -1

  3、(20xx年高考湖南卷)F1、F2是橢圓C: 的焦點,在C上滿足PF1⊥PF2的點P的個數為( )

  A、2個 B、4個 C、無數個 D、不確定

  4、橢圓 的左、右焦點為F1、F2,一直線過F1交橢圓于A、B兩點,則△ABF2的周長為 ( )

  A、32 B、16 C、8 D、4

  5、已知點P在橢圓(x-2)2+2y2=1上,則 的最小值為( )

  A、 C、

  6、我們把離心率等于黃金比 是優(yōu)美橢圓,F、A分別是它的左焦點和右頂點,B是它的短軸的一個端點,則 等于( )

  A、 C、

  二、填空題

  7、橢圓 的頂點坐標為 和 ,焦點坐標為 ,焦距為 ,長軸長為 ,短軸長為 ,離心率為 ,準線方程為 .

  8、設F是橢圓 的右焦點,且橢圓上至少有21個不同的點Pi(i=1,2, ),使得FP1、FP2、FP3…組成公差為d的等差數列,則d的取值范圍是 .

  9、設 , 是橢圓 的兩個焦點,P是橢圓上一點,且 ,則得 .

  10、若橢圓 =1的準線平行于x軸則m的取值范圍是

  三、解答題

  11、根據下列條件求橢圓的標準方程

  (1)和橢圓 共準線,且離心率為 .

 ?。?)已知P點在以坐標軸為對稱軸的橢圓上,點P到兩焦點的距離分別為 和 ,過P作長軸的垂線恰好過橢圓的一個焦點.

  12、已知 軸上的一定點A(1,0),Q為橢圓 上的動點,求AQ中點M的軌跡方程

  13、橢圓 的焦點為 =(3, -1)共線.

 ?。?)求橢圓的離心率;

 ?。?)設M是橢圓上任意一點,且 = 、 ∈R),證明 為定值.

  【試題答案】

  1、B

  2、D

  3、A

  4、B

  5、D(法一:設 ,則y=kx代入橢圓方程中得:(1+2k2)x2-4x+3=0,由△≥0得: .法二:用橢圓的參數方程及三角函數的有界性求解)

  6、C

  7、( ;(0, );6;10;8; ; .

  8、 ∪

  9、

  10、m< 且m≠0.

  11、(1)設橢圓方程 .

  解得 , 所求橢圓方程為(2)由 .

  所求橢圓方程為 的坐標為

  因為點 為橢圓 上的動點

  所以有

  所以中點

  13、解:設P點橫坐標為x0,則 為鈍角.當且僅當 .

  14、(1)解:設橢圓方程 ,F(c,0),則直線AB的方程為y=x-c,代入 ,化簡得:

  x1x2=

  由 =(x1+x2,y1+y2), 共線,得:3(y1+y2)+(x1+x2)=0,

  又y1=x1-c,y2=x2-c

  ∴ 3(x1+x2-2c)+(x1+x2)=0,∴ x1+x2=

  即 = ,∴ a2=3b2

  ∴ 高中地理 ,故離心率e= .

  (2)證明:由(1)知a2=3b2,所以橢圓 可化為x2+3y2=3b2

  設 = (x2,y2),∴ ,

  ∵M∴ ( )2+3( )2=3b2

  即: )+ (由(1)知x1+x2= ,a2= 2,b2= c2.

  x1x2= = 2

  x1x2+3y1y2=x1x2+3(x1-c)(x2-c)

  =4x1x2-3(x1+x2)c+3c2= 2- 2+3c2=0

  又 =3b2代入①得

  為定值,定值為1.

數學高一上冊教案 篇5

  一、等差數列

  1、定義

  注:“從第二項起”及

  “同一常數”用紅色粉筆標注

  二、等差數列的通項公式

  (一)例題與練習

  通過練習2和3 引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創(chuàng)設問題情境,激發(fā)學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。

  (二)新課探究

  1、由引入自然的給出等差數列的概念:

  如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列, 這個常數叫做等差數列的公差,通常用字母d來表示。強調:

  ① “從第二項起”滿足條件; f

 ?、诠頳一定是由后項減前項所得;

  ③每一項與它的前一項的差必須是同一個常數(強調“同一個常數” );

  在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:

  an+1—an=d (n≥1) ;h4z+0"6vG

  同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。

  1。 9 ,8,7,6,5,4,……;√ d=—1

  2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01

  3。 0,0,0,0,0,0,……。; √ d=0

  4。 1,2,3,2,3,4,……;×

  5。 1,0,1,0,1,……×

  其中第一個數列公差<0,>0,第三個數列公差=0

  由此強調:公差可以是正數、負數,也可以是0

  2、第二個重點部分為等差數列的通項公式

  在歸納等差數列通項公式中,我采用討論式的教學方法。給出等差數列的首項 ,公差d,由學生研究分組討論a4 的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協作意識又化解了教學難點。

  若一等差數列{an }的首項是a1,公差是d,

  則據其定義可得:

  a2 — a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d

  進而歸納出等差數列的通項公式:

  an=a1+(n—1)d

  此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹的學習態(tài)度,在這里向學生介紹另外一種求數列通項公式的辦法——————迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ……

  an+1 – an=d

  將這(n—1)個等式左右兩邊分別相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)

  當n=1時,(1)也成立,

  所以對一切n∈N﹡,上面的公式都成立

  因此它就是等差數列{an}的通項公式。

  在迭加法的證明過程中,我采用啟發(fā)式教學方法。

  利用等差數列概念啟發(fā)學生寫出n—1個等式。

  對照已歸納出的通項公式啟發(fā)學生想出將n—1個等式相加。證出通項公式。

  在這里通過該知識點引入迭加法這一數學思想,逐步達到“注重方法,凸現思想” 的教學要求

  接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n—1)×2 , 即an=2n—1 以此來鞏固等差數列通項公式運用

  同時要求畫出該數列圖象,由此說明等差數列是關于正整數n一次函數,其圖像是均勻排開的無窮多個孤立點。用函數的思想來研究數列,使數列的性質顯現得更加清楚。

  (三)應用舉例

  這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。

  例1 (1)求等差數列8,5,2,…的第20項;第30項;第40項

  (2)—401是不是等差數列—5,—9,—13,…的`項?如果是,是第幾項?

  在第一問中我添加了計算第30項和第40項以加強鞏固等差數列通項公式;第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式an

  例2 在等差數列{an}中,已知a5=10,a12 =31,求首項a1與公差d。

  在前面例1的基礎上將例2當作練習作為對通項公式的鞏固

  例3 是一個實際建模問題

  建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5。8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?

  這道題我采用啟發(fā)式和討論式相結合的教學方法。啟發(fā)學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數列,引導學生將該實際問題轉化為數學模型——————等差數列:(學生討論分析,分別演板,教師評析問題。問題可能出現在:項數學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用展示實際樓梯圖以化解難點)

  設置此題的目的:

  1。加強同學們對應用題的綜合分析能力,

  2。通過數學實際問題引出等差數列問題,激發(fā)了學生的興趣;

  3。再者通過數學實例展示了“從實際問題出發(fā)經抽象概括建立數學模型,最后還原說明實際問題的“數學建?!钡臄祵W思想方法

  (四)反饋練習

  1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

  2、書上例3)梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。

  目的:對學生加強建模思想訓練。

  3、若數例{an} 是等差數列,若 bn = an ,(為常數)試證明:數列{bn}是等差數列

  此題是對學生進行數列問題提高訓練,學習如何用定義證明數列問題同時強化了等差數列的概念。

  (五)歸納小結 (由學生總結這節(jié)課的收獲)

  1。等差數列的概念及數學表達式.

  強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數

  2。等差數列的通項公式 an= a1+(n—1) d會知三求一

  3.用“數學建?!彼枷敕椒ń鉀Q實際問題

  (六)布置作業(yè)

  必做題:課本P114 習題3。2第2,6 題

  選做題:已知等差數列{an}的首項a1= —24,從第10項開始為正數,求公差d的取值范圍。(目的:通過分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)

  五、板書設計

  在板書中突出本節(jié)重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。

高一數學下冊教案 篇6

  一、教學過程

  1.復習

  反函數的概念、反函數求法、互為反函數的函數定義域值域的關系。

  求出函數y=x3的反函數。

  2.新課

  先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數的圖象。有部分學生發(fā)出了“咦”的一聲,因為他們得到了如下的圖象:

  教師在畫出上述圖象的學生中選定生1,將他的屏幕內容通過教學系統(tǒng)放到其他同學的屏幕上,很快有學生作出反應。

  生2:這是y=x3的反函數y=的圖象。

  師:對,但是怎么會得到這個圖象,請大家討論。

  (學生展開討論,但找不出原因。)

  師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>

  (生1將他的制作過程重新重復了一次。)

  生3:問題出在他選擇的次序不對。

  師:哪個次序?

  生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。

  師:是這樣嗎?我們請生1再做一次。

  (這次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數y=x3的圖象。)

  師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數y=的圖象呢?

  (學生再次陷入思考,一會兒有學生舉手。)

  師:我們請生4來告訴大家。

  生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數也正好是將x與y交換。

  師:完全正確。下面我們進一步研究y=x3的圖象及其反函數y=的圖象的關系,同學們能不能看出這兩個函數的圖象有什么樣的關系?

  (多數學生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進一步追問。)

  師:怎么由y=x3的.圖象得到y(tǒng)=的圖象?

  生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y(tǒng)=的圖象。

  師:將橫坐標與縱坐標互換?怎么換?

  (學生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)

  師:我其實是想問大家這兩個函數的圖象有沒有對稱關系,有的話,是什么樣的對稱關系?

  (學生重新開始觀察這兩個函數的圖象,一會兒有學生舉手。)

  生6:我發(fā)現這兩個圖象應是關于某條直線對稱。

  師:能說說是關于哪條直線對稱嗎?

  生6:我還沒找出來。

  (接下來,教師引導學生利用幾何畫板找出兩函數圖象的對稱軸,畫出如下圖形,如圖2所示:)

  學生通過移動點A(點B、C隨之移動)后發(fā)現,BC的中點M在同一條直線上,這條直線就是兩函數圖象的對稱軸,在追蹤M點后,發(fā)現中點的軌跡是直線y=x。

  生7:y=x3的圖象及其反函數y=的圖象關于直線y=x對稱。

  師:這個結論有一般性嗎?其他函數及其反函數的圖象,也有這種對稱關系嗎?請同學們用其他函數來試一試。

  (學生紛紛畫出其他函數與其反函數的圖象進行驗證,最后大家一致得出結論:函數及其反函數的圖象關于直線y=x對稱。)

  教師巡視全班時已經發(fā)現這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數y=x2(x∈R)沒有反函數,②也不是函數的圖象。

  最后教師與學生一起總結:

  點(x,y)與點(y,x)關于直線y=x對稱;

  函數及其反函數的圖象關于直線y=x對稱。

  二、反思與點評

  1.在開學初,我就教學幾何畫板4。0的用法,在教函數圖象畫法的過程當中,發(fā)現學生根據選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設計起源于此。雖然幾何畫板4。04中,能直接根據函數解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質,所以本節(jié)課教學中,我有意選擇了幾何畫板4。0進行教學。

  2.荷蘭數學教育家弗賴登塔爾認為,數學學習過程當中,可借助于生動直觀的形象來引導人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。

  計算機作為一種現代信息技術工具,在直觀化方面有很強的表現能力,如在函數的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。

  在本節(jié)課的教學中,計算機更多的是作為學生探索發(fā)現的工具,學生不但發(fā)現了函數與其反函數圖象間的對稱關系,而且在更深層次上理解了反函數的概念,對反函數的存在性、反函數的求法等方面也有了更深刻的理解。

  當前計算機用于中學數學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應是:將計算機作為學生的認知工具,讓學生通過計算機發(fā)現探索,甚至利用計算機來做數學,在此過程當中更好地理解數學概念,促進數學思維,發(fā)展數學創(chuàng)新能力。

  3.在引出兩個函數圖象對稱關系的時候,問題設計不甚妥當,本來是想要學生回答兩個函數圖象對稱的關系,但學生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。

高一數學教案 篇7

  課題:函數的奇偶性

  一、三維目標:

  知識與技能:使學生理解奇函數、偶函數的概念,學會運用定義判斷函數的奇偶性。

  過程與方法:通過設置問題情境培養(yǎng)學生判斷、推斷的能力。

  情感態(tài)度與價值觀:通過繪制和展示優(yōu)美的函數圖象來陶冶學生的情操。 通過組織學生分組討論,培養(yǎng)學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關系,培養(yǎng)學生善于探索的思維品質。

  二、學習重、難點:

  重點:函數的奇偶性的概念。

  難點:函數奇偶性的判斷。

  三、學法指導:

  學生在獨立思考的基礎上進行合作交流,在思考、探索和交流的過程中獲得對函數奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結合的方式進行處理,使學生邊學邊練,及時鞏固。

  四、知識鏈接:

  1、復習在初中學習的軸對稱圖形和中心對稱圖形的定義:

  2、分別畫出函數f (x) =x3與g (x) = x2的圖象,并說出圖象的對稱性。

  五、學習過程:

  函數的奇偶性:

(1)對于函數 ,其定義域關于原點對稱:

  如果,那么函數 為奇函數;

  如果,那么函數 為偶函數。

(2)奇函數的圖象關于對稱,偶函數的圖象關于對稱。

(3)奇函數在對稱區(qū)間的增減性 ;偶函數在對稱區(qū)間的增減性 。

  六、達標訓練:

  a1、判斷下列函數的奇偶性。

(1)f(x)=x4;(2)f(x)=x5;

(3)f(x)=x+ (4)f(x)=

  a2、二次函數 ( )是偶函數,則b= 。

  b3、已知 ,其中 為常數,若 ,則

。

  b4、若函數 是定義在r上的奇函數,則函數 的圖象關于 ( )

(a) 軸對稱 (b) 軸對稱 (c)原點對稱 (d)以上均不對

  b5、如果定義在區(qū)間 上的函數 為奇函數,則 = 。

  c6、若函數 是定義在r上的奇函數,且當 時, ,那么當

  時, = 。

  d7、設 是 上的奇函數, ,當 時, ,則 等于 ( )

(a) (b) (c) (d)

  d8、定義在 上的奇函數 ,則常數 , 。

  七、學習小結:

  本節(jié)主要學習了函數的奇偶性,判斷函數的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數的奇偶性時,必須注意首先判斷函數的定義域是否關于原點對稱。單調性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結合函數的圖象充分理解好單調性和奇偶性這兩個性質。

  八、課后反思:

高一數學教案 篇8

一、內容及其解析

(一)內容:指數函數的性質的應用。

(二)解析:通過進一步鞏固指數函數的圖象和性質,掌握由指數函數和其他簡單函數組成的復合函數的性質:定義域、值域、單調性,最值等性質。

二、目標及其解析

(一)教學目標

  指數函數的圖象及其性質的應用;

(二)解析

  通過進一步掌握指數函數的圖象和性質,能夠構建指數函數的模型來解決實際問題;體會指數函數在實際生活中的重要作用,感受數學建模在解題中的作用,提高學生分析問題與解決問題的能力。

三、問題診斷分析

  解決實際問題本來就是學生的一個難點,并且學生對函數模型也不熟悉,所以在構建函數模型解決實際問題是學生的一個難點,解決的方法就是在實例中讓學生加強理解,通過實例讓學生感受到如何選擇適當的函數模型。

四、教學過程設計

  探究點一:平移指數函數的圖像

  例1:畫出函數 的圖像,并根據圖像指出它的單調區(qū)間。

  解析:由函數的解析式可得:

  其圖像分成兩部分,一部分是將 (x-1)的圖像作出,而它的圖像可以看作 的圖像沿x軸的負方向平移一個單位而得到的,另一部分是將 的圖像作出,而它的圖像可以看作將 的圖像沿x軸的負方向平移一個單位而得到的。

  解:圖像由老師們自己畫出

  變式訓練一:已知函數

(1)作出其圖像;

(2)由圖像指出其單調區(qū)間;

  解:(1) 的圖像如下圖:

(2)函數的增區(qū)間是(-,-2],減區(qū)間是[-2,+).

  探究點二:復合函數的性質

  例2:已知函數

(1)求f(x)的定義域;

(2)討論f(x)的奇偶性;

  解析:求定義域注意分母的范圍,判斷奇偶性需要注意定義域是否關于原點對稱。

  解:(1)要使函數有意義,須 -1 ,即x 1,所以,定義域為(- ,0) (0,+ ).

(2)變式訓練二:已知函數 ,試判斷函數的奇偶性;

  簡析:∵定義域為 ,且 是奇函數;

  探究點三 應用問題

  例3某種放射性物質不斷變化為其他物質,每經過一年,這種物質剩留的質量是原來的

  84%.寫出這種物質的剩留量關于時間的函數關系式。

【解】

  設該物質的質量是1,經過 年后剩留量是 .

  經過1年,剩留量

  變式:儲蓄按復利計算利息,若本金為 元,每期利率為 ,設存期是 ,本利和(本金加上利息)為 元。

(1)寫出本利和 隨存期 變化的函數關系式;

(2)如果存入本金1000元,每期利率為%,試計算5期后的本利和。

  分析:復利要把本利和作為本金來計算下一年的利息。

【解】

(1)已知本金為 元,利率為 則:

  1期后的本利和為

  2期后的本利和為

  期后的本利和為

(2)將 代入上式得

六。小結

  通過本節(jié)課的學習,本節(jié)課應用了指數函數的性質來解決了什么問題?如何構建指數函數模型,解決生活中的實際問題?

高一數學的教案 篇9

學習目標:

(1)理解函數的概念

(2)會用集合與對應語言來刻畫函數,

(3)了解構成函數的要素。

重點:

  函數概念的理解

難點

  函數符號y=f(x)的理解

知識梳理:

  自學課本P29—P31,填充以下空格。

  1、設集合A是一個非空的實數集,對于A內 ,按照確定的對應法則f,都有 與它對應,則這種對應關系叫做集合A上的一個函數,記作 。

  2、對函數 ,其中x叫做 ,x的取值范圍(數集A)叫做這個函數的 ,所有函數值的集合 叫做這個函數的 ,函數y=f(x) 也經常寫為 。

  3、因為函數的值域被 完全確定,所以確定一個函數只需要

  4、依函數定義,要檢驗兩個給定的變量之間是否存在函數關系,只要檢驗:

① ;② 。

  5、設a, b是兩個實數,且a

(1)滿足不等式 的實數x的集合叫做閉區(qū)間,記作 。

(2)滿足不等式a

(3)滿足不等式 或 的實數x的集合叫做半開半閉區(qū)間,分別表示為 ;

  分別滿足x≥a,x>a,x≤a,x

  其中實數a, b表示區(qū)間的兩端點。

  完成課本P33,練習A 1、2;練習B 1、2、3。

例題解析

  題型一:函數的概念

  例1:下圖中可表示函數y=f(x)的圖像的只可能是( )

  練習:設M={x| },N={y| },給出下列四個圖像,其中能表示從集合M到集合N的函數關系的有個。

  題型二:相同函數的判斷問題

  例2:已知下列四組函數:① 與y=1 ② 與y=x ③ 與

④ 與 其中表示同一函數的是( )

  A. ② ③ B. ② ④ C. ① ④ D. ④

  練習:已知下列四組函數,表示同一函數的是( )

  A. 和 B. 和

  C. 和 D. 和

  題型三:函數的定義域和值域問題

  例3:求函數f(x)= 的定義域

  練習:課本P33練習A組 4.

  例4:求函數 , ,在0,1,2處的函數值和值域。

當堂檢測

  1、下列各組函數中,表示同一個函數的是( A )

  A、 B、

  C、 D、

  2、已知函數 滿足f(1)=f(2)=0,則f(-1)的值是( C )

  A、5 B、-5 C、6 D、-6

  3、給出下列四個命題:

① 函數就是兩個數集之間的對應關系;

② 若函數的定義域只含有一個元素,則值域也只含有一個元素;

③ 因為 的函數值不隨 的變化而變化,所以 不是函數;

④ 定義域和對應關系確定后,函數的值域也就確定了。

  其中正確的有( B )

  A. 1 個 B. 2 個 C. 3個 D. 4 個

  4、下列函數完全相同的是 ( D )

  A. , B. ,

  C. , D. ,

  5、在下列四個圖形中,不能表示函數的圖象的是 ( B )

  6、設 ,則 等于 ( D )

  A. B. C. 1

  7、已知函數 ,求 的值。( )

數學高一優(yōu)秀教案 篇10

  一、教學目標

  1、知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。

  2、過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

  3、情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。

  二、教學重點:畫出簡單幾何體、簡單組合體的三視圖;

  難點:識別三視圖所表示的空間幾何體。

  三、學法指導:

  觀察、動手實踐、討論、類比。

  四、教學過程

(一)創(chuàng)設情景,揭開課題

  展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。

(二)講授新課

  1、中心投影與平行投影:

  中心投影:光由一點向外散射形成的投影;

  平行投影:在一束平行光線照射下形成的投影。

  正投影:在平行投影中,投影線正對著投影面。

  2、三視圖:

  正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;

  側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;

  俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

  三視圖:幾何體的正視圖、側視圖和俯視圖統(tǒng)稱為幾何體的三視圖。

  三視圖的畫法規(guī)則:長對正,高平齊,寬相等。

  長對正:正視圖與俯視圖的長相等,且相互對正;

  高平齊:正視圖與側視圖的高度相等,且相互對齊;

  寬相等:俯視圖與側視圖的寬度相等。

  3、畫長方體的三視圖:

  正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。

  長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。

  4、畫圓柱、圓錐的三視圖:

  5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。

數學高一優(yōu)秀教案【精品10篇】相關文章:

二年級數學教案(匯總8篇)

高一數學教學反思13篇 高一數學教學反思范文

八年級數學教案范文6篇 初中數學八年級教案設計

《分類》中班數學教案12篇(中班數學分類教案設計意圖)

精品小學數學教案11篇(小學數學經典教案模板)

有關八年級數學教案范文5篇 初中8年級數學教案

一年級數學開學第一課教案4篇(小學一年級數學開學第一課教學設計)

精品小學數學教案3篇(小學數學經典教案模板)

小班數學比較高矮教案3篇 幼兒園小班數學比較高矮教案及反思

小學一年級數學上冊教案【匯總13篇】


亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

                        欧美一卡二卡三卡四卡| 毛片av一区二区三区| 精品日韩一区二区三区免费视频| 国产精品久久毛片av大全日韩| 亚洲美女在线一区| 久久久综合精品| 日韩女优毛片在线| 蜜臀av性久久久久蜜臀aⅴ流畅| 国产欧美精品日韩区二区麻豆天美| 日韩欧美一级二级三级久久久| 六月丁香婷婷色狠狠久久| 国产精品每日更新在线播放网址| 久久av资源网| 九九九精品视频| 粉嫩蜜臀av国产精品网站| 中文字幕av一区二区三区高| 一本大道久久a久久综合婷婷| 欧美一区二区三区小说| 欧美一区二区三区四区视频| 成人激情图片网| 欧美一级欧美三级在线观看| 欧美日韩另类国产亚洲欧美一级| 国产精品国产自产拍高清av王其| 日韩欧美一级二级三级| 色综合中文字幕| 欧美一级二级在线观看| 亚洲国产sm捆绑调教视频| 国产中文一区二区三区| 国产精品传媒视频| 成人app软件下载大全免费| 亚洲精品国产一区二区三区四区在线| 欧美日韩国产免费| 国产亚洲一本大道中文在线| 欧美日韩一区二区三区高清| 国产一区二区三区四区五区入口| 亚洲精品一线二线三线无人区| 精品午夜久久福利影院| 久久蜜桃一区二区| 一区二区欧美国产| 在线日韩av片| 天天综合色天天综合色h| 国产亚洲精品免费| 亚洲色图在线看| 欧美电视剧免费全集观看| 久久久综合九色合综国产精品| 亚洲第一狼人社区| 亚洲欧美在线视频观看| 一本大道综合伊人精品热热| 一区二区三区免费看视频| 欧美一区二区在线免费播放| 一区二区三区精品| 精品一区二区三区在线播放视频| 国产精品一区二区久久不卡| 一区二区三区av电影| 欧美日韩亚洲综合在线 欧美亚洲特黄一级| 国产精品色婷婷| 色婷婷av久久久久久久| 欧美一区二区视频免费观看| 欧美丰满一区二区免费视频| 一区二区三区国产精品| 国产亚洲成年网址在线观看| 波波电影院一区二区三区| 一区二区三区在线免费| 国产精品国产三级国产普通话三级| 欧洲视频一区二区| 亚洲一区二区三区不卡国产欧美| 国产美女娇喘av呻吟久久| 日韩久久一区二区| 国产成人在线观看| 久久激情五月婷婷| 国产精品无码永久免费888| 天天av天天翘天天综合网| 欧美欧美欧美欧美| 136国产福利精品导航| 91片黄在线观看| 韩国v欧美v日本v亚洲v| 欧美伊人久久久久久午夜久久久久| 在线电影欧美成精品| 香蕉成人伊视频在线观看| 日韩国产一区二| 欧美日韩国产一区二区三区地区| 国产精品久久久久久久久久免费看| 色88888久久久久久影院按摩| 午夜精品国产更新| 国产高清无密码一区二区三区| 精品久久久久久久人人人人传媒| 欧美96一区二区免费视频| 日韩电影在线观看电影| 中文字幕日韩一区二区| 午夜激情久久久| 欧美唯美清纯偷拍| 91久久精品一区二区三| 国产精品福利一区| 欧美日韩激情一区二区三区| 国产成人精品亚洲日本在线桃色| 亚洲日本一区二区三区| 日韩精品色哟哟| 亚洲精品一区二区精华| 欧美午夜精品久久久久久孕妇| 日韩午夜在线播放| 欧美r级电影在线观看| 奇米一区二区三区av| 久久久无码精品亚洲日韩按摩| 亚洲精品菠萝久久久久久久| 在线成人高清不卡| 日韩精品专区在线影院观看| 欧美一区二区三区视频在线| 欧美日韩中文字幕一区二区| 中文字幕在线观看不卡视频| 日韩欧美成人一区二区| 午夜私人影院久久久久| 欧美一区二区三区免费观看视频| 国产精品久久久久影视| 久久精品亚洲一区二区三区浴池| 日韩精品91亚洲二区在线观看| 日本一区二区三区四区| 久久精品久久久精品美女| 中文幕一区二区三区久久蜜桃| 日本强好片久久久久久aaa| 国产高清视频一区| 精品第一国产综合精品aⅴ| 亚洲精品在线网站| 风间由美中文字幕在线看视频国产欧美| 亚洲v精品v日韩v欧美v专区| 成人欧美一区二区三区1314| 精品国产欧美一区二区| 日韩不卡一区二区| 99精品国产一区二区三区不卡| 色综合久久天天综合网| 婷婷一区二区三区| 久久se精品一区二区| 亚洲成年人影院| 亚洲美女少妇撒尿| 韩国av一区二区三区四区| 久久影院电视剧免费观看| 国产精品白丝在线| 日本伊人精品一区二区三区观看方式| 欧美年轻男男videosbes| 精品亚洲成a人| 国产成都精品91一区二区三| 日韩欧美一区二区久久婷婷| 国产成人av资源| 中文字幕国产精品一区二区| 中文字幕佐山爱一区二区免费| 欧美性受xxxx| 国产精品综合二区| 欧美高清一级片在线观看| 欧美三片在线视频观看| 精品国产亚洲一区二区三区在线观看| 欧美一区二区三级| 成人动漫一区二区| 国产精品免费视频网站| 欧美日韩二区三区| 国产日韩欧美综合一区| 91女人视频在线观看| 成人午夜电影小说| 国产一区二区按摩在线观看| 成人a区在线观看| 日韩毛片高清在线播放| 麻豆成人免费电影| 亚洲五月六月丁香激情| 久99久精品视频免费观看| 国产精品538一区二区在线| 欧美精品久久99久久在免费线| 国产精品99精品久久免费| 久久精品男人的天堂| 捆绑紧缚一区二区三区视频| 亚洲精品亚洲人成人网| 亚洲女性喷水在线观看一区| 欧美高清视频在线高清观看mv色露露十八| 亚洲欧美成人一区二区三区| 亚洲国产裸拍裸体视频在线观看乱了| 久久久久国产一区二区三区四区| 国产成人久久精品77777最新版本| 色哟哟国产精品免费观看| 欧美亚洲精品一区| 日韩一区二区三区四区五区六区| 欧美成人艳星乳罩| 99精品久久免费看蜜臀剧情介绍| 欧美剧情电影在线观看完整版免费励志电影| 久久精品一级爱片| 国产网站一区二区三区| 成人一二三区视频| 日韩欧美一区二区在线视频| 男女男精品视频网| 美女久久久精品| 亚洲韩国一区二区三区| 一区二区三区四区不卡视频| 国产在线乱码一区二区三区| 奇米精品一区二区三区四区| 国产在线精品免费| 最新久久zyz资源站| 欧美天天综合网| 国产日韩欧美精品在线| 午夜私人影院久久久久| 精品亚洲成a人在线观看| 国产精品久久网站| 欧美日韩成人在线一区| 日韩精品一区二区三区蜜臀| 99vv1com这只有精品|