下面是范文網(wǎng)小編整理的有關八年級數(shù)學教案范文5篇 初中8年級數(shù)學教案,供大家賞析。

有關八年級數(shù)學教案范文1
教學任務分析
教學目標
知識技能
探索并掌握梯形的有關概念和基本性質,探索、了解并掌握等腰梯形的性質.
數(shù)學思考
能夠運用梯形的有關概念和性質進行有關問題的論證和計算,進一步培養(yǎng)學生的分析問題能力和計算能力.
解決問題
通過添加輔助線,把梯形的問題轉化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉化的思想.
情感態(tài)度
在應用等腰梯形的性質的過程養(yǎng)成獨立思考的習慣, 在數(shù)學學習活動中獲得成功的體驗.
重點
等腰梯形的性質及其應用.
難點
解決梯形問題的基本方法(將梯形轉化為平行四邊形和三角形及正確運用輔助線),及梯形有關知識的應用.
教學流程安排
活動流程圖
活動的內容和目的
活動1想一想
活動2說一說
活動3畫一畫
活動4做—做
活動5練一練
活動6理一理
觀察梯形圖片,引入本節(jié)課的學習內容.
了解梯形定義、各部分名稱及分類.
通過畫圖活動,初步發(fā)現(xiàn)梯形與三角形的.轉化關系.
探究得到等腰梯形的性質.
通過解決具體問題,尋找解決梯形問題的方法.
通過整理回顧,鞏固知識、提高能力、滲透思想.
教學過程設計
問題與情景
師生行為
設計意圖
[活動1]
觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點?
演示圖片,學生欣賞.
結合圖片,教師引導學生注意這些圖片的共同特征:一組對邊平行而另一組對邊不平行.
由現(xiàn)實中實際問題入手,設置問題情境,引出本課主題.通過學生觀察圖片和歸納圖形的特點,培養(yǎng)學生的觀察、概括能力.
[活動2]
梯形定義 一組對邊平行而另一組對邊不平行的四邊形叫做梯形.
學生根據(jù)梯形概念畫出圖形,教師可以進一步引導學生類比梯形與平行四邊形的區(qū)別和聯(lián)系.
通過類比,培養(yǎng)學生歸納、總結的能力.
問題與情景
師生行為
設計意圖
一些基本概念
?。?)(如圖):底、腰、高.
?。?)等腰梯形:兩腰相等的梯形叫做等腰梯形.
?。?)直角梯形:有一個角是直角的梯形叫做直角梯形.
學生在小學已經(jīng)對梯形有一定的感性認識,因此教師讓學生自己介紹(1)中的基本概念,在聆聽學生發(fā)言后, 教師可以強調:①梯形與四邊形的關系;
?、谏?、下底的概念是由底的長短來定義的,而并不是指位置來說的.
熟悉圖形,明確概念,為探究圖形性質做準備.
[活動3]
畫一畫
在下列所給圖中的每個三角形中畫一條線段,
?。?)怎樣畫才能得到一個梯形?
?。?)在哪些三角形中,能夠得到一個等腰梯形?
在學生獨立探究的基礎上,學生分組交流.
教師參與小組活動,指導、傾聽學生交流.針對不同認識水平的學生,引導其正確作圖.
本次活動教師應重點關注:
?。?)學生在活動過程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉化方法.
?。?)學生能否將等腰三角形轉化為等腰梯形.
?。?)學生能否主動參與探究活動,在討論中發(fā)表自己的見解,傾聽他人的意見,對不同的觀點進行質疑,從中獲益.
等腰梯形的性質與等腰三角形相仿,因此在活動3中設計了第(2)題,在推導等腰梯形性質或需要添加輔助線時,可以借助等腰三角形來研究.尤其是根據(jù)等腰三角形是軸對稱圖形,可得到等腰梯形是軸對稱圖形這條性質,為活動4種開展探究奠定了基礎.
問題與情景
師生行為
設計意圖
[活動4]
做—做
探索等腰梯形的性質(引入用軸對稱解決問題的思想).
在一張方格紙上作一個等腰梯形,連接兩條對角線.
?。?)這個圖形是軸對稱圖形嗎?對稱軸在哪里?你能發(fā)現(xiàn)哪些相等的線段和相等的角?學生畫圖并通過觀察猜想;
(2)這個等腰梯形的兩條對角線的長度有什么關系?
學生按照實驗步驟,獨立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗證、歸納結論.
針對不同認識水平的學生,教師指導學生活動.
師生共同歸納:
?、俚妊菪问禽S對稱圖形,上下底的中點連線是對稱軸.
?、诘妊菪蝺裳嗟龋?/p>
?、鄣妊菪瓮坏咨系膬蓚€角相等.
?、艿妊菪蔚膬蓷l對角線相等.
教學中要注意引導學生證明等腰梯形的性質,尤其在證明“等腰梯形同一底上的兩個角相等”這條性質時,“平移腰”和“作高”這兩種常見的輔助線,在教學中頭一次出現(xiàn),可以借此機會,給學生介紹這兩種輔助線的添加方法.
[活動5]
練—練
例1 (教材P118的例1)略.
例2 如圖,梯形ABCD中,AD∥BC,
∠B=70°,∠C=40°,AD=6cm,BC=15cm.
求CD的長.
師生共同分析,尋找解決問題的方法和策略.
例1是等腰梯形性質的直接運用,請學生分析、解答,教師聆聽,同時注意指導學生,在證明△EAD是等腰三角形時,要用到梯形的定義“上下底互相平行(AD∥BC)”這一點.
分析:設法把已知中所給的條件都移到一個三角形中,便可以解決問題.
其方法是:平移一腰,過點A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.
解:(略)
通過題目的練習與講解應讓學生知道:解決梯形問題的基本思想和方法就是通過添加適當?shù)妮o助線,把梯形問題轉化為已經(jīng)熟悉的平行四邊形和三角形問題來解決.在教學時應讓學生注意它們的作用,掌握這些輔助線的使用對于學好梯形內容很有幫助.
問題與情景
師生行為
設計意圖
例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,
BE⊥AC于E.
求證:BE=CD.
分析:要證BE=CD,需添加適當?shù)妮o助線,構造全等三角形,其方法是:平移一腰,過點D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.
證明(略)
例2與例3這里給出的輔助線均是“平移一腰”,老師們在教學或練習中可以根據(jù)學生的實際情況,再引導、補充其他輔助線的添加方法,讓學生多了解、多見識.
[活動6]
1.小結
2.布置作業(yè)
?。?)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.
?。?)已知:如圖,
梯形ABCD中,CD//AB,,.
求證:AD=AB—DC.
?。?)已知,如圖,
梯形ABCD中,AD∥BC,E是AB的中點,DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點F,由全等可得結論)
師生歸納總結:
解決梯形問題常用的方法:
?。?)“平移腰”:把梯形分成一個平行四邊形和一個三角形(圖1);
(2)“作高”:使兩腰在兩個直角三角形中(圖2);
?。?)“延腰”:構造具有公共角的兩個等腰三角形(圖3);
?。?)“平移對角線”:使兩條對角線在同一個三角形中(圖4);
?。?)“等積變形”,連結梯形上底一端點和另一腰中點,并延長與下底延長線交于一點,構成三角形(圖5).
盡量多地讓學生參與發(fā)言是一個交流的過程.
梳理本節(jié)課應用過的輔助線添加方法,既可以鍛煉學生思維,又可以留給學生繼續(xù)探究的空間.
學生通過獨立思考,完成課后作業(yè),便于發(fā)現(xiàn)問題,及時查漏補缺.
有關八年級數(shù)學教案范文2
一、教學目標
?。ㄒ唬⒅R與技能:
(1)使學生了解因式分解的意義,理解因式分解的概念。
?。?)認識因式分解與整式乘法的相互關系——互逆關系,并能運用這種關系尋求因式分解的方法。
?。ǘ?、過程與方法:
?。?)由學生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關系,培養(yǎng)學生的觀察能力,進一步發(fā)展學生的類比思想。
(2)由整式乘法的逆運算過渡到因式分解,發(fā)展學生的逆向思維能力。
?。?)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學生的分析問題能力與綜合應用能力。
?。ㄈ?、情感態(tài)度與價值觀:讓學生初步感受對立統(tǒng)一的辨證觀點以及實事求是的科學態(tài)度。
二、教學重點和難點
重點:因式分解的概念及提公因式法。
難點:正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。
三、教學過程
教學環(huán)節(jié):
活動1:復習引入
看誰算得快:用簡便方法計算:
(1)7/9 ×13-7/9 ×6+7/9 ×2= ;
?。?)-2.67×132+25×2.67+7×2.67= ;
?。?)992–1= 。
設計意圖:
如果說學生對因式分解還相當陌生的話,相信學生對用簡便方法進行計算應該相當熟悉.引入這一步的目的旨在讓學生通過回顧用簡便方法計算——因數(shù)分解這一特殊算法,使學生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設計的計算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階.
注意事項:學生對于(1)(2)兩小題逆向利用乘法的分配律進行運算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運算則有一定的困難,因此,有必要引導學生復習七年級所學過的整式的乘法運算中的平方差公式,幫助他們順利地逆向運用平方差公式。
活動2:導入課題
P165的探究(略);
2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?
設計意圖:
引導學生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強化學生對因數(shù)分解的理解,為學生類比因式分解提供必要的精神準備。
活動3:探究新知
看誰算得準:
計算下列式子:
?。?)3x(x-1)= ;
?。?)(a+b+c)= ;
(3)(+4)(-4)= ;
(4)(-3)2= ;
(5)a(a+1)(a-1)= ;
根據(jù)上面的算式填空:
?。?)a+b+c= ;
(2)3x2-3x= ;
?。?)2-16= ;
(4)a3-a= ;
?。?)2-6+9= 。
在第一組的整式乘法的計算上,學生通過對第一組式子的觀察得出第二組式子的結果,然后通過對這兩組式子的結果的比較,使學生對因式分解有一個初步的意識,由整式乘法的逆運算逐步過渡到因式分解,發(fā)展學生的逆向思維能力。
活動4:歸納、得出新知
比較以下兩種運算的聯(lián)系與區(qū)別:
a(a+1)(a-1)= a3-a
a3-a= a(a+1)(a-1)
在第三環(huán)節(jié)的運算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?
有關八年級數(shù)學教案范文3
學習目標:
1、知道線段的垂直平分線的概念,探索并掌握成軸對稱的兩個圖形全等,對稱軸是對稱點連線的垂直平分線等性質.
2、經(jīng)歷探索軸對稱的性質的活動過程 ,積累數(shù)學活動經(jīng)驗,進一步發(fā)展空間觀念和有條理地思考和表達能力.
3、利用軸對稱的基本性質解決實際問題。
學習重點:靈活運用對應點所連的線段被 對稱軸垂直平分、對應線段相等、對應角相等等性質。
學習難點:軸對稱的性質的理解和拓展運用。
學習過程 :
一、探索活動
如右圖所示,在紙上任意畫一點A,把紙對折,用針在 點A處穿孔,再把紙展開,并連接兩針孔A、A.
兩針孔A、A和線段AA與折痕MN之間有什么關系?
1、請同學們按要求畫點、折紙、扎孔,仔細觀察你 所做的圖形,然后研究:兩針孔A、A與折痕MN之間有什么關系?線段AA與折痕MN之間又有什么關系呢?兩針孔A、A ,直線MN 線段AA.
2、那么 直線MN為什么會垂直平分線段AA呢?
3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(mi dpoint perpendicular).
例如,如圖,對稱軸MN就是對稱點A、A連線(即線段AA)的垂直 平分線.
4.如圖,在紙上再任畫一點B,同樣地,折紙、穿孔、展開,并連接AB、AB、BB.線段AB與AB有什么關系?線段BB與MN 有什么關系?
5.如圖,再在紙上任畫一點C,并仿照上面進行操作.
(1)線段AC與 AC有什么關系 ? BC與BC呢?線段CC與MN有什么關系?
(2)A與A有什么關系? B與B呢? △ABC 與△ABC有什么關系?為什么?
(3)軸對稱有哪些性質?
6.軸對稱的性質:
(1)成軸對稱的兩個圖形全等.
(2)如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線.
二、例題講解
例1、(1)如圖,A 、B、C、D的對稱點分別是 ,線段AC、AB的對應線段分別是 ,CD= , CBA= ,ADC= .
(2)連接AF、BE,則線段AF、BE有什么關系?并用測量的方法驗證.
(3)AE與BF平行嗎?為什么?
(4)AE與BF平行,能說明軸對稱圖形對稱點的連線一定 互相平行嗎?
(5)延長線段BC、FG,作直線AB、EG,你有什么發(fā)現(xiàn)嗎?
有關八年級數(shù)學教案范文4
一、學生起點分析
學生已經(jīng)了勾股定理,并在先前其他內容學習中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗,如:已知兩直線平行,有什么樣的結論?
反之,滿足什么條件的兩直線是平行?因而,本課時由勾股定理出發(fā)逆向思考獲得逆命題,學生應該已經(jīng)具備這樣的意識,但具體研究中
可能要用到反證等思路,對現(xiàn)階段學生而言可能還具有一定困難,需要教師適時的引導。
二、學習任務分析
本節(jié)課是北師大版數(shù)學八年級(上)第一章《勾股定理》第2節(jié)。教學任務有:探索勾股定理的逆定理
并利用該定理根據(jù)邊長判斷一個三角形是否是直角三角形,利用該定理解決一些簡單的實際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗。為此確定教學目標:
● 知識與技能目標
1.理解勾股定理逆定理的具體內容及勾股數(shù)的概念;
2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。
● 過程與方法目標
1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力;
2.經(jīng)歷從實驗到驗證的過程,發(fā)展學生的數(shù)學歸納能力。
● 情感與態(tài)度目標
1.體驗生活中的數(shù)學的應用價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學數(shù)學、用數(shù)學的興趣;
2.在探索過程中體驗成功的喜悅,樹立學習的自信心。
教學重點
理解勾股定理逆定理的具體內容。
三、教法學法
1.教學方法:實驗猜想歸納論證
本節(jié)課的教學對象是初二學生,他們的參與意識較強,思維活躍,對通過實驗獲得數(shù)學結論已有一定的體驗
但數(shù)學思維嚴謹?shù)耐瑢W總是心存疑慮,利用邏輯推理的方式,讓同學心服口服顯得非常迫切,為了實現(xiàn)本節(jié)課的教學目標,我力求從以下三個方面對學生進行引導:
(1)從創(chuàng)設問題情景入手,通過知識再現(xiàn),孕育教學過程;
(2)從學生活動出發(fā),通過以舊引新,順勢教學過程;
(3)利用探索,研究手段,通過思維深入,領悟教學過程。
2.課前準備
教具:教材、電腦、多媒體課件。
學具:教材、筆記本、課堂練習本、文具。
四、教學過程設計
本節(jié)課設計了七個環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):
登高望遠;第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結;第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入
內容:
情境:1.直角三角形中,三邊長度之間滿足什么樣的關系?
2.如果一個三角形中有兩邊的平方和等于第三邊的平方,那么這個三角形是否就是直角三角形呢?
意圖:
通過情境的創(chuàng)設引入新課,激發(fā)學生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎。
第二環(huán)節(jié):合作探究
內容1:探究
下面有三組數(shù),分別是一個三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個問題:
1.這三組數(shù)都滿足 嗎?
2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學生分為4人活動小組,每個小組可以任選其中的一組數(shù)。
意圖:
通過學生的合作探究,得出若一個三角形的三邊長 ,滿足 ,則這個三角形是直角三角形這一結論;在活動中體驗出數(shù)學結論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。
效果:
經(jīng)過學生充分討論后,匯總各小組實驗結果發(fā)現(xiàn):①5,12,13滿足 ,可以構成直角三角形;②7,24,25滿足 ,可以構成直角三角形;③8,15,17滿足 ,可以構成直角三角形。
從上面的分組實驗很容易得出如下結論:
如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形
內容2:說理
提問:有同學認為測量結果可能有誤差,不同意這個發(fā)現(xiàn)。你認為這個發(fā)現(xiàn)正確嗎?你能給出一個更有說服力的理由嗎?
意圖:讓學生明確,僅僅基于測量結果得到的結論未必可靠,需要進一步通過說理等方式使學生確信結論的可靠性,同時明晰結論:
如果一個三角形的三邊長 ,滿足 ,那么這個三角形是直角三角形
滿足 的三個正整數(shù),稱為勾股數(shù)。
注意事項:為了讓學生確認該結論,需要進行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學有一個直觀的認識。
活動3:反思總結
提問:
1.同學們還能找出哪些勾股數(shù)呢?
2.今天的結論與前面學習勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個三角形是直角三角形呢?
4.通過今天同學們合作探究,你能體驗出一個數(shù)學結論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?
意圖:進一步讓學生認識該定理與勾股定理之間的關系
第三環(huán)節(jié):小試牛刀
內容:
1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。
①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一個三角形的三邊長分別是 ,則這個三角形的面積是( )
A 250 B 150 C 200 D 不能確定
解答:B
3.如圖1:在 中, 于 , ,則 是( )
A 等腰三角形 B 銳角三角形
C 直角三角形 D 鈍角三角形
解答:C
4.將直角三角形的三邊擴大相同的倍數(shù)后, (圖1)
得到的三角形是( )
A 直角三角形 B 銳角三角形
C 鈍角三角形 D 不能確定
解答:A
意圖:
通過練習,加強對勾股定理及勾股定理逆定理認識及應用
效果
每題都要求學生獨立完成(5分鐘),并指出各題分別用了哪些知識。
第四環(huán)節(jié):登高望遠
內容:
1.一個零件的形狀如圖2所示,按規(guī)定這個零件中 都應是直角。工人師傅量得這個零件各邊尺寸如圖3所示,這個零件符合要求嗎?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的輪船,航行240海里時方位儀壞了,憑經(jīng)驗,船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉彎后,是否沿正西方向航行?
解答:由題意畫出相應的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船轉彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實際問題,進一步鞏固該定理。
效果:
學生能用自己的語言表達清楚解決問題的過程即可;利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形時,當遇見數(shù)據(jù)較大時,要懂得將 作適當變形( ),以便于計算。
第五環(huán)節(jié):鞏固提高
內容:
1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?
圖4 圖5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學生充分利用所學知識解決問題時,考慮問題要全面,不要漏解;第二題在于考查學生如何利用網(wǎng)格進行計算,從而解決問題。
效果:
學生在對所學知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應用。
第六環(huán)節(jié):交流小結
內容:
師生相互交流總結出:
1.今天所學內容①會利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形;②滿足 的三個正整數(shù),稱為勾股數(shù);
2.從今天所學內容及所作練習中總結出的經(jīng)驗與方法:①數(shù)學是源于生活又服務于生活的;②數(shù)學結論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形時,當遇見數(shù)據(jù)較大時,要懂得將 作適當變形, 便于計算。
意圖:
鼓勵學生結合本節(jié)課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史;敢于面對數(shù)學學習中的困難,并有獨立克服困難和運用知識解決問題的成功經(jīng)驗,進一步體會數(shù)學的應用價值,發(fā)展運用數(shù)學的信心和能力,初步形成積極參與數(shù)學活動的意識。
效果:
學生暢所欲言自己的切身感受與實際收獲,總結出利用三角形三邊數(shù)量關系 判斷一個三角形是直角三角形從古至今在實際生活中的廣泛應用。
第七環(huán)節(jié):布置作業(yè)
課本習題1.4第1,2,4題。
五、教學反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個三角形的三邊長 ,滿足 ,是否能得到這個三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習。
2.注重引導學生積極參與實驗活動,從中體驗任何一個數(shù)學結論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗證的過程,同時遵循由特殊一般特殊的發(fā)展規(guī)律。
3.在利用今天所學知識解決實際問題時,引導學生善于對公式變形,便于簡便計算。
4.注重對學習新知理解應用偏困難的學生的進一步關注。
5.對于勾股定理的逆定理的論證可根據(jù)學生的實際情況做適當調整,不做要求。
由于本班學生整體水平較高,因而本設計教學容量相對較大,教學中,應注意根據(jù)自己班級學生的狀況進行適當?shù)膭h減或調整。
附:板書設計
能得到直角三角形嗎
情景引入 小試牛刀: 登高望遠
有關八年級數(shù)學教案范文5
教學目標:
(1)理解通分的意義,理解最簡公分母的意義;
(2)掌握分式的通分法則,能熟練掌握通分運算。
教學重點:分式通分的理解和掌握。
教學難點:分式通分中最簡公分母的確定。
教學工具:投影儀
教學方法:啟發(fā)式、討論式
教學過程:
(一)引入
(1)如何計算:
由此讓學生復習分數(shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。
(2)如何計算:
(3)何計算:
引導學生思考,猜想如何求解?
(二)新課
1、類比分數(shù)的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
注意:通分保證
(1)各分式與原分式相等;
(2)各分式分母相等。
2.通分的依據(jù):分式的基本性質.
3.通分的關鍵:確定幾個分式的最簡公分母.
通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.
根據(jù)分式通分和最簡公分母的定義,將分式通分:
最簡公分母為:
然后根據(jù)分式的基本性質,分別對原來的各分式的分子和分母乘一個適當?shù)恼?,使各分式的分母都化為通分如下:xxx
通過本例使學生對于分式的通分大致過程和思路有所了解。讓學生歸納通分的思路過程。
例1 通分:xxx
分析:讓學生找分式的公分母,可設問“分母的系數(shù)各不相同如何解決?”,依據(jù)分數(shù)的通分找最小公倍數(shù)。
解:∵ 最簡公分母是12xy2,
小結:各分母的系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).
解:∵最簡公分母是10a2b2c2,
由學生歸納最簡公分母的思路。
分式通分中求最簡公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡公分母。
有關八年級數(shù)學教案范文5篇 初中8年級數(shù)學教案相關文章:
★ 一年級數(shù)學開學第一課教案4篇(小學一年級數(shù)學開學第一課教學設計)
★ 精品小學數(shù)學教案3篇(小學數(shù)學經(jīng)典教案模板)
★ 小班數(shù)學比較高矮教案3篇 幼兒園小班數(shù)學比較高矮教案及反思
★ 人教新課標二年級數(shù)學上冊教案8篇(新人教版二年級上數(shù)學教案)