下面是范文網(wǎng)小編收集的初中數(shù)學銳角三角函數(shù)知識點2篇 銳角三角形函數(shù)初中基礎知識,以供參考。

初中數(shù)學銳角三角函數(shù)知識點1
銳角三角函數(shù)的定義
銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),(余割csc)都叫做角A的銳角三角函數(shù)。
正弦等于對邊比斜邊
余弦等于鄰邊比斜邊
正切等于對邊比鄰邊
余切等于鄰邊比對邊
正割等于斜邊比鄰邊
余割等于斜邊比對邊
正切與余切互為倒數(shù)
它的本質是任意角的集合與一個比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標系中定義的,其定義域為整個實數(shù)域。另一種定義是在直角三角形中,但并不完全?,F(xiàn)代數(shù)學把它們描述成無窮數(shù)列的極限和微分方程的解,將其定義擴展到復數(shù)系。
由于三角函數(shù)的周期性,它并不具有單值函數(shù)意義上的反函數(shù)。
它有六種基本函數(shù)(初等基本表示):
函數(shù)名 正弦 余弦 正切 余切 正割 余割
在平面直角坐標系xOy中,從點O引出一條射線OP,設旋轉角為θ,設OP=r,P點的坐標為(x,y)有
正弦函數(shù) sinθ=y/r
余弦函數(shù) cosθ=x/r
正切函數(shù) tanθ=y/x
余切函數(shù) cotθ=x/y
正割函數(shù) secθ=r/x
余割函數(shù) cscθ=r/y
(斜邊為r,對邊為y,鄰邊為x。)
以及兩個不常用,已趨于被淘汰的函數(shù):
正矢函數(shù) versinθ =1-cosθ
余矢函數(shù) coversθ =1-sinθ
銳角三角函數(shù)的性質
1、銳角三角函數(shù)定義
銳角角A的正弦,余弦和正切都叫做角A的銳角三角函數(shù)
2、互余角的三角函數(shù)間的關系。
sin(90°-α)=cosα, cos(90°-α)=sinα,
tan(90°-α)=cotα, cot(90°-α)=tanα.
3、同角三角函數(shù)間的關系
平方關系:sin2α+cos2α=1
倒數(shù)關系:cotα=(或tanα·cotα=1)
商的關系:tanα= , cotα=.
(這三個關系的證明均可由定義得出)
4、三角函數(shù)值
(1)特殊角三角函數(shù)值
(2)0°~90°的任意角的三角函數(shù)值,查三角函數(shù)表。
(3)銳角三角函數(shù)值的變化情況
(i)銳角三角函數(shù)值都是正值
(ii)當角度在0°~90°間變化時,
正弦值隨著角度的增大(或減小)而增大(或減小)
余弦值隨著角度的增大(或減小)而減小(或增大)
正切值隨著角度的增大(或減小)而增大(或減小)
余切值隨著角度的增大(或減小)而減小(或增大)
(iii)當角度在0°≤α≤90°間變化時,
0≤sinα≤1, 1≥cosα≥0,
當角度在0°<α<90°間變化時,
tanα>0, cotα>0.
數(shù)學的學習思維方法
1比較法
通過對比數(shù)學條件及問題的異同點,研究產(chǎn)生異同點的原因,從而發(fā)現(xiàn)解決問題的方法,叫比較法。
比較法要注意:
(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。
(2)找聯(lián)系與區(qū)別,這是比較的實質。
(3)必須在同一種關系下(同一種標準)進行比較,這是“比較”的基本條件。
(4)要抓住主要內容進行比較,盡量少用“窮舉法”進行比較,那樣會使重點不突出。
(5)因為數(shù)學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。
2公式法
運用定律、公式、規(guī)則、法則來解決問題的方法。它體現(xiàn)的是由一般到特殊的演繹思維。公式法簡便、有效,也是孩子學習數(shù)學必須學會和掌握的一種方法。但一定要讓孩子對公式、定律、規(guī)則、法則有一個正確而深刻的理解,并能準確運用。
數(shù)學勾股定理知識點
1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。
2.勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個三角形是直角三角形。
3.經(jīng)過證明被確認正確的命題叫做定理。
我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
初中數(shù)學銳角三角函數(shù)知識點2
三角函數(shù)是數(shù)學中屬于初等函數(shù)中的超越函數(shù)的一類函數(shù)。經(jīng)過名師的指導總結后,為大家?guī)砹嗽敿毜某踔袛?shù)學三角函數(shù)公式大全。
銳角三角函數(shù)公式
sin α=∠α的對邊 / 斜邊
cos α=∠α的鄰邊 / 斜邊
tan α=∠α的對邊 / ∠α的鄰邊
cot α=∠α的鄰邊 / ∠α的對邊
上面為大家?guī)淼氖浅踔袛?shù)學三角函數(shù)公式集錦,希望同學們能熟記于心了。
初中數(shù)學正方形定理公式
關于正方形定理公式的內容精講知識,希望同學們很好的掌握下面的內容。
正方形定理公式
正方形的特征:
①正方形的四邊相等;
?、谡叫蔚乃膫€角都是直角;
?、壅叫蔚膬蓷l對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
?、儆幸粋€角是直角的菱形是正方形;
?、谟幸唤M鄰邊相等的矩形是正方形。
希望上面對正方形定理公式知識的講解學習,同學們都能很好的掌握,相信同學們會取得很好的成績的哦。
初中數(shù)學平行四邊形定理公式
同學們認真學習,下面是老師對數(shù)學中平行四邊形定理公式的內容講解。
平行四邊形
平行四邊形的性質:
?、倨叫兴倪呅蔚膶呄嗟?;
②平行四邊形的對角相等;
③平行四邊形的對角線互相平分;
平行四邊形的判定:
?、賰山M對角分別相等的四邊形是平行四邊形;
?、趦山M對邊分別相等的四邊形是平行四邊形;
?、蹖蔷€互相平分的四邊形是平行四邊形;
?、芤唤M對邊平行且相等的四邊形是平行四邊形。
上面對數(shù)學中平行四邊形定理公式知識的講解學習,同學們都能很好的掌握了吧,相信同學們會從中學習的更好的哦。
初中數(shù)學直角三角形定理公式
下面是對直角三角形定理公式的內容講解,希望給同學們的學習很好的幫助。
直角三角形的性質:
?、僦苯侨切蔚膬蓚€銳角互為余角;
?、谥苯侨切涡边吷系闹芯€等于斜邊的一半;
?、壑苯侨切蔚膬芍苯沁叺钠椒胶偷扔谛边叺钠椒剑ü垂啥ɡ恚?;
?、苤苯侨切沃?0度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
?、儆袃蓚€角互余的三角形是直角三角形;
?、谌绻切蔚娜呴La、b 、c有下面關系a^2+b^2=c^2
,那么這個三角形是直角三角形(勾股定理的逆定理)。
以上對數(shù)學直角三角形定理公式的內容講解學習,同學們都能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學等腰三角形的性質定理公式
下面是對等腰三角形的性質定理公式的內容學習,希望同學們認真看看。
等腰三角形的性質:
?、俚妊切蔚膬蓚€底角相等;
②等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合(三線合一)
上面對等腰三角形的性質定理公式的內容講解學習,同學們都能很好的掌握了吧,希望同學們在考試中取得很好的成績。
初中數(shù)學三角形定理公式
對于三角形定理公式的學習,我們做下面的內容講解學習哦。
三角形
三角形的三邊關系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內角和定理:三角形的三個內角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的`和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內角;
三角形的三條角平分線交于一點(內心);
三角形的三邊的垂直平分線交于一點(外心);
三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;
以上對三角形定理公式的內容講解學習,希望同學們都能很好的掌握,并在考試中取得很好的成績哦。
初中數(shù)學銳角三角函數(shù)知識點2篇 銳角三角形函數(shù)初中基礎知識相關文章:
★ 初中數(shù)學教學設計與反思總結3篇(中學數(shù)學教學反思范文)
★ 初中數(shù)學八年級教學總結3篇 八年級數(shù)學期末教學總結
★ 初中數(shù)學骨干教師研修心得體會范文7篇 小學數(shù)學骨干教師研修心得
★ 初中數(shù)學一年級教案最新范文3篇 一年級的數(shù)學教案 詳案
★ 初中數(shù)學教研組工作計劃8篇 數(shù)學教研組計劃工作計劃初中
★ 初中數(shù)學教學設計教案模板范文最新3篇 初中數(shù)學教案板書設計模板
★ 年初中數(shù)學教師教學工作總結范文9篇(初中數(shù)學教師學期工作總結)
★ 小學二年級下冊數(shù)學知識點總結14篇 二年級下冊的知識點數(shù)學總結
★ 關于學期末初中數(shù)學教學總結3篇 初中數(shù)學教師學期期末總結