下面是范文網(wǎng)小編整理的《因式分解》說(shuō)課稿6篇 因式分解的說(shuō)課稿人教版,供大家參考。

《因式分解》說(shuō)課稿1
各位評(píng)委老師:
上午好!我是最后一號(hào),非常不好意思,因?yàn)槲易尨蠹彝纯喽鋵?shí)的等到現(xiàn)在。我今天說(shuō)課的課題是因式分解(板書(shū)課題4.1因式分解)。我將主要從教材分析,教法分析,學(xué)法指導(dǎo),教學(xué)過(guò)程及補(bǔ)充說(shuō)明等五個(gè)方面來(lái)具體闡述這節(jié)課。下面開(kāi)始我的說(shuō)課。
一、教材分析
?。ㄒ唬┙滩牡牡匚慌c作用
本節(jié)課是初中數(shù)學(xué)人教北師大版八年級(jí)下冊(cè)第四章第一節(jié)的內(nèi)容。在此之前,學(xué)生已經(jīng)學(xué)習(xí)了整式乘法的相關(guān)知識(shí),這為過(guò)渡到本節(jié)的學(xué)習(xí)起了鋪墊作用。同時(shí)本節(jié)課也為后續(xù)知識(shí)一元二次方程求解方法的學(xué)習(xí)奠定一定的作用,因此在教材中本節(jié)課起著承上啟下的過(guò)渡作用,而且本節(jié)課鑲嵌著深刻的數(shù)形結(jié)合思想、類(lèi)比思想,有利于學(xué)生思維的深化。
?。ǘ┙虒W(xué)目標(biāo)
根據(jù)以上對(duì)教材的認(rèn)識(shí)分析和學(xué)生的實(shí)際情況,結(jié)合數(shù)學(xué)新課標(biāo),我制定如下教學(xué)目標(biāo):
1、知識(shí)與技能
?。?)了解因式分解的意義,理解因式分解的概念。
?。?)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系。
?。?)培養(yǎng)和提高學(xué)生分析、解決問(wèn)題的能力
2、過(guò)程與方法
通過(guò)因式分解的學(xué)習(xí),讓學(xué)生經(jīng)歷因式分解概念的探索過(guò)程,感知、了解數(shù)學(xué)概念形成的方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題,分析問(wèn)題,解決問(wèn)題的能力。
3、情感態(tài)度與價(jià)值觀(guān)
鼓勵(lì)學(xué)生積極主動(dòng)的參與教學(xué)的整個(gè)過(guò)程,激發(fā)其求知的欲望;讓學(xué)生體會(huì)數(shù)形結(jié)合的數(shù)學(xué)思想;領(lǐng)會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀(guān)察、勇于質(zhì)疑的優(yōu)良品質(zhì)。
(三)教學(xué)重點(diǎn)、難點(diǎn)
根據(jù)新課程標(biāo)準(zhǔn),在吃透教材的'基礎(chǔ)上,我將本節(jié)課的重難點(diǎn)確立為因式分解的概念,通過(guò)多層次展示,多角度分析,多方面練習(xí),以達(dá)到突出重點(diǎn),突破難點(diǎn)的目的。
二、教法分析
數(shù)學(xué)是思維的體操,是一門(mén)以培養(yǎng)人的思維,發(fā)展人的思維為目的的重要學(xué)科,因此,在教學(xué)中,教師不僅要使學(xué)生“知其然”,更要使學(xué)生“知其所以然”。
我們?cè)趲熒葹橹黧w,又為客體的原則下,展現(xiàn)獲取知識(shí)和方法的思維過(guò)程?;诒竟?jié)課的特點(diǎn)和學(xué)生的實(shí)際情況,主要采用啟發(fā)誘導(dǎo)、自主學(xué)習(xí)、合作探疑相結(jié)合等教學(xué)方法。
三、學(xué)法指導(dǎo)
現(xiàn)代的文盲不再是不識(shí)字的人,而是不會(huì)學(xué)習(xí)的人。數(shù)學(xué)課重在讓學(xué)生逐漸學(xué)會(huì)自主學(xué)習(xí),養(yǎng)成良好的學(xué)習(xí)習(xí)慣和規(guī)范的數(shù)學(xué)思維方式、方法?;诖?,在學(xué)生的學(xué)習(xí)過(guò)程中,教師要對(duì)學(xué)生順勢(shì)啟發(fā)、恰當(dāng)點(diǎn)撥,以達(dá)到優(yōu)化學(xué)生學(xué)習(xí)結(jié)構(gòu)的目的。
結(jié)合教材、教法和學(xué)情,本節(jié)課借助多媒體、活頁(yè)學(xué)案等輔助手段進(jìn)行,以達(dá)到增加課堂直觀(guān)效果,打造高效課堂的目的。
四、教學(xué)過(guò)程
結(jié)合《數(shù)學(xué)新課標(biāo)》和學(xué)生已有的知識(shí)及生活經(jīng)驗(yàn),根據(jù)新課改的理念,本節(jié)課我主要設(shè)計(jì)以下幾個(gè)教學(xué)環(huán)節(jié):①溫故知新(3分鐘)②探究新知(25分鐘)③基礎(chǔ)過(guò)關(guān)(7分鐘)④課堂小結(jié)(3分鐘)⑤課堂自測(cè)(5分鐘)⑥課堂質(zhì)疑(2分鐘)
接著,我再細(xì)說(shuō)一下這幾個(gè)環(huán)節(jié)
?。ㄒ唬毓手?/p>
給出以下兩個(gè)搶答題
這一環(huán)節(jié)的目的既達(dá)到溫習(xí)乘法分配律,又起到預(yù)熱學(xué)生思維的目的,以保證學(xué)生盡快進(jìn)入課堂學(xué)習(xí)的角色。
?。ǘ┨骄啃轮?/p>
1、因式分解的概念
?。?)想一想
能被 整除嗎?還能被哪些數(shù)整除?你是怎么得出來(lái)的?
(2)議一議
你能?chē)L試把a(bǔ)3-a化成幾個(gè)整式的乘積的形式嗎?與同伴交流.
(3)拼一拼
分別寫(xiě)出箭頭兩邊的面積
_____________________________=___________________
《因式分解》說(shuō)課稿2
我說(shuō)課的題目是選自華東師大版,八年級(jí)上冊(cè),第十四章第四節(jié),因式分解,這是初中數(shù)學(xué)傳統(tǒng)的經(jīng)典,在新課標(biāo)的理念下,重新理解它深刻的內(nèi)涵。
為此,我設(shè)定說(shuō)課程序是:
一、重新審視因式分解的教育價(jià)值
二、教材處理的設(shè)想
三、教學(xué)總體設(shè)計(jì)
四、教學(xué)過(guò)程概述
?。ㄒ唬┲匦聦徱曇蚴椒纸獾慕逃齼r(jià)值
傳統(tǒng)的因式分解,是數(shù)學(xué)的工具使學(xué)生熟練掌握一些因式分解技能技巧,本來(lái)十分簡(jiǎn)單的問(wèn)題演繹得十分復(fù)雜(如填數(shù)法,拆項(xiàng)法,湊和法,十字相乘法)
新課程把因式分解作為培養(yǎng)學(xué)生逆向思維,全面思考,靈活解決矛盾的載體。為此,淡化理論。簡(jiǎn)化難題,緊緊掌握最基本的教學(xué)方法(提取公因式法和公式法)即可。這是新課程體現(xiàn)教育價(jià)值最明顯的變化。為此,在學(xué)生思維方法和對(duì)世上的事,要正,反兩方面認(rèn)識(shí)上下功夫,是這節(jié)課的重要所在。
通過(guò)整式乘法與因式分解互為逆向變換,使學(xué)生澄清這種逆是反過(guò)來(lái)的變換,不是逆運(yùn)算—是教學(xué)的難點(diǎn)(逆運(yùn)算,是在一個(gè)算式中,以?xún)煞N形式不同實(shí)質(zhì)不變的兩種運(yùn)算,而因式分解是一種恒等變換的兩種說(shuō)法)
為實(shí)現(xiàn)本節(jié)課的教育價(jià)值,在教學(xué)目標(biāo)的確定上,重點(diǎn)考慮我的學(xué)生理解能力弱,善于模仿,滿(mǎn)足于一知半解,我確定:
1、知識(shí)的能力目標(biāo):理解因式分解的意義,掌握提取公因式法和公式法,激發(fā)學(xué)生學(xué)習(xí)興趣,培養(yǎng)學(xué)生創(chuàng)編因式分解題目的能力
2、方法與過(guò)程目標(biāo):采用自學(xué)自練的方法,逐見(jiàn)打開(kāi)學(xué)生思維的大門(mén),學(xué)會(huì)兩分法看問(wèn)題,體驗(yàn)知識(shí)發(fā)生過(guò)程就是學(xué)生思維發(fā)展的全過(guò)程
3、情感態(tài)度與價(jià)值觀(guān):通過(guò)情境教學(xué),使學(xué)生在參與中激發(fā)學(xué)習(xí)情感,關(guān)注每一個(gè)學(xué)生的思維變化,鼓勵(lì)成功全面體現(xiàn)學(xué)生的價(jià)值觀(guān),使學(xué)生滿(mǎn)腔熱忱,科學(xué)積極的態(tài)度,投入本節(jié)課的學(xué)習(xí)
?。ǘ┙滩奶幚碓O(shè)想
我以我是教學(xué)資源的開(kāi)發(fā)者的身份,重新組織教學(xué)內(nèi)容,增加教學(xué)情境的創(chuàng)設(shè),明確目的與動(dòng)機(jī),用實(shí)際問(wèn)題是學(xué)生體驗(yàn)到這節(jié)內(nèi)容的價(jià)值(見(jiàn)教學(xué)過(guò)程)
?。ㄈ┙虒W(xué)總體設(shè)計(jì)
教學(xué)總體框架:教師設(shè)計(jì)生活中的實(shí)際問(wèn)題,使學(xué)生在問(wèn)題情境中展開(kāi)思考→通過(guò)揭示因式分解的概念學(xué)習(xí)因式分解的意義→學(xué)生實(shí)踐探索,發(fā)現(xiàn)提取公因式和公式法→熟練運(yùn)用這種方法解題,發(fā)展學(xué)生的理性思維→通過(guò)學(xué)生的編題活動(dòng),培養(yǎng)學(xué)生思維創(chuàng)造性。
教學(xué)的`主體是概念與方法20分鐘訓(xùn)練上主題部分由學(xué)生自主探索,合作學(xué)習(xí)。
(四)教學(xué)過(guò)程概述
教學(xué)環(huán)節(jié)一:創(chuàng)設(shè)情境:“去過(guò)本溪嗎?”“本溪的著名礦產(chǎn)是什么?”〈鐵礦〉本溪歪頭山的鐵礦石,每噸含鐵75%,采礦工人第一天采礦石203噸,那么,第一天礦石含鐵多少?(75%×203)第二天采礦石198噸含鐵(75%×198)第三天采礦216噸,含鐵(75%×216)現(xiàn)將這三天采礦石的含鐵量總數(shù)用代數(shù)式表示:75%×203+75%×198+75%×216,還可表示:75%(203+198+216),若果用a表示75%,用x、y、z表示三天的采礦數(shù)就有ax+ay+az=a(x+y+z)
通過(guò)此例,揭示因式分解的概念:把一個(gè)多項(xiàng)式化成幾個(gè)整式積的形式,就是因式分解,結(jié)合ax+ay+az=a(x+y+z)揭示,這種方法叫提取公因式法“正好相反”通過(guò)討論,認(rèn)識(shí)到整式乘法與因式分解不是逆運(yùn)算,而是互逆變換,從而突破了教學(xué)難點(diǎn),實(shí)現(xiàn)了教學(xué)的第一目標(biāo)
教學(xué)環(huán)節(jié)二:思維在探索中展開(kāi):教學(xué)中,抓住“反過(guò)來(lái)”讓學(xué)生從思維的逆向考慮,如何分解因式,這里在學(xué)生完成
a(x+y+z)=ax+ay+az的基礎(chǔ)上,再完成
ax+ay+az=a(x+y+z)
a2—b2=(a+b)(a—b)
a2+2ab+b2=(a+b)(a+b)
(制課件)
整式乘法因式分解
原型單項(xiàng)式與多項(xiàng)式、多項(xiàng)式與多項(xiàng)式相乘單項(xiàng)式與單項(xiàng)式、單項(xiàng)式與多項(xiàng)式、多項(xiàng)式與多項(xiàng)式相加
結(jié)果多項(xiàng)式因式乘積
范圍都能完成不能完成:3ab+5ac+7mn
在學(xué)生的實(shí)踐過(guò)程中,認(rèn)識(shí)到多項(xiàng)式的因式分解是有條件限制的,不是所有的多項(xiàng)式都能因式分解。因此,會(huì)觀(guān)察,判斷,十分重要。
教學(xué)環(huán)節(jié)三:思維在展開(kāi)教學(xué)中定勢(shì):本節(jié)課重點(diǎn),掌握1、提取公因式法2、公式法對(duì)于這一新知識(shí)點(diǎn),學(xué)生感到陌生,必須先使他們頭腦中牢記,這就是先形成的思維定式
例如,公式法中,平方差公式a2—b2=(a+b)(a—b)
如—a2+25b216x2—4/9y2
特點(diǎn):1兩項(xiàng)式2平方3異號(hào)
教學(xué)環(huán)節(jié)四:思維在編題中創(chuàng)新:學(xué)生在認(rèn)識(shí)整式乘法與因式分解的關(guān)系后,就不難編出很多因式分解的題目來(lái)(要求編題中,簡(jiǎn)單,明了,易解)
總之,教學(xué)的著眼點(diǎn),不是熟練技能,而是發(fā)展思維,使學(xué)生在學(xué)習(xí)情感,態(tài)度的價(jià)值觀(guān)上發(fā)生深刻的變化。
《因式分解》說(shuō)課稿3
一、教材分析
?。ㄒ唬┑匚缓妥饔?/p>
分解因式與數(shù)是分解質(zhì)因數(shù)類(lèi)似,是代數(shù)中一種重要的恒等變形,它是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來(lái)的,是整式乘法的逆向變形。在后面的學(xué)習(xí)過(guò)程中應(yīng)用廣泛,如:將分式通分和約分,二次根式的計(jì)算與化簡(jiǎn),以及解方程都將以它為基礎(chǔ)。因此分解因式這一章在整個(gè)教材中起到了承上啟下的作用。同時(shí),在因式分解中體現(xiàn)了數(shù)學(xué)的眾多思想,如:“化歸”思想、“類(lèi)比”思想、“整體”思想等。因此,因式分解的學(xué)習(xí)是數(shù)學(xué)學(xué)習(xí)的重要內(nèi)容。根據(jù)《課標(biāo)》的要求,本章介紹了最基本的兩種分解因式的方法:提公因式法和運(yùn)用公式法(平方差、完全平方公式)。因此公式法是分解因式的重要方法之一,是現(xiàn)階段的學(xué)習(xí)重點(diǎn)
?。ǘW(xué)情分析:學(xué)生已經(jīng)學(xué)習(xí)了乘法公式中的完全平方公式和平方差公式,在上一節(jié)課學(xué)習(xí)了提公因式法和平方差公式分解因式,初步體會(huì)了分解因式與整式乘法的互逆關(guān)系,為本節(jié)課的學(xué)習(xí)奠定了良好的基礎(chǔ)。學(xué)生已經(jīng)建立了較好的預(yù)習(xí)習(xí)慣,為本節(jié)課的難點(diǎn)突破提供了先決條件。
(三)教學(xué)目標(biāo)
1.知識(shí)與技能使學(xué)生了解運(yùn)用公式法分解因式的意義;會(huì)用公式法(直接用公式不超過(guò)兩次)分解因式(指數(shù)是正整數(shù));使學(xué)生清楚地知道提公因式法是分解因式的首先考慮的方法,再考慮用平方差公式或完全平方公式進(jìn)行分解因式。
2.過(guò)程與方法經(jīng)歷通過(guò)整式乘法的完全平方公式逆向得出運(yùn)用公式分解因式方法的'過(guò)程,發(fā)展學(xué)生的逆向思維和推理能力。
3.情感與態(tài)度培養(yǎng)學(xué)生靈活的運(yùn)用知識(shí)的能力和操積極思考的良好行為,體會(huì)因式分解在數(shù)學(xué)學(xué)科中的地位和價(jià)值。
?。ㄋ模┙虒W(xué)重難點(diǎn)、
1.教學(xué)重點(diǎn):會(huì)運(yùn)用完全平方公式和分解因式,培養(yǎng)學(xué)生觀(guān)察、分析問(wèn)題的能力。
2.教學(xué)難點(diǎn):準(zhǔn)確理解和掌握公式的結(jié)構(gòu)特征,并善于運(yùn)用完全平方公式分解因式。
3.易錯(cuò)點(diǎn):分解因式不徹底。
二、學(xué)法與教法分析
1.學(xué)法分析:
?、僮⒁夥纸庖蚴脚c整式乘法的關(guān)系,兩者是互逆的。
②注意完全平方公式的特點(diǎn)。
2.教法分析:根據(jù)《課標(biāo)》的要求,結(jié)合本班學(xué)生的知識(shí)水平,本堂課采用對(duì)比,探究,講練結(jié)合的方法完成教學(xué)目標(biāo)。在教學(xué)過(guò)程中,所選例題保證基本的運(yùn)算技能,避免復(fù)雜的題型,直接用公式不超過(guò)兩次。
三、教學(xué)過(guò)程分析
(一)創(chuàng)設(shè)情境,發(fā)現(xiàn)新知
1.計(jì)算:通過(guò)讓學(xué)生回答完全平方公式,加深學(xué)生對(duì)公式的印象,并通過(guò)讓學(xué)生觀(guān)察完全平方公式而找到公式的特征(1)x2+2x+1(2)(3x+y)(3x-y)利用一組整式的乘法運(yùn)算復(fù)習(xí)完全平方公式和平方差公式,為探究運(yùn)用公式法分解因式打下基礎(chǔ)。
2.你能把多項(xiàng)式:(x+1)2分解因式嗎?學(xué)生從對(duì)比整式的乘法去探索分解因式方法,可以感受到這種互逆變形以及它們之間的聯(lián)系。
?。ǘ┖献鹘涣?,探索新知
(1)用語(yǔ)言怎樣敘述公式?(2)公式有什么結(jié)構(gòu)特征?(3)公式中的字母a、b可以表示什么?引導(dǎo)學(xué)生觀(guān)察平方差公式的結(jié)構(gòu)特征,
學(xué)生在互動(dòng)交流中,既形成了對(duì)知識(shí)的全面認(rèn)識(shí),又培養(yǎng)了觀(guān)察、分析能力以及合作交流的能力。判斷:下列多項(xiàng)式能不能運(yùn)用完全平方公式分解因式?(1)x2+y2(2)x2+2xy+y2(3)x2-2xy+y2(4)x2+2xy-y2(5)-x2+2xy-y2通過(guò)這一組判斷,使學(xué)生加深理解和掌握完全平方公式的結(jié)構(gòu)特征,既突出了重點(diǎn),也培養(yǎng)了學(xué)生的應(yīng)用意識(shí)。
(三)例題探究,體驗(yàn)新知
(A)通過(guò)自學(xué)例3:分解因式(1)x2+14x+49(2)(m+n)2-6(m+n)+9引導(dǎo)學(xué)生得出分解因式的一般步驟,向?qū)W生滲透“化歸”思想。
要讓學(xué)生明確:(1)要先確定公式中的a和b;
?。?)學(xué)習(xí)規(guī)范的步驟書(shū)寫(xiě)。
?。˙)例4、分解因式(1)3ax2+6axy+3ay2(2)-x2-4y2+4xy
加深對(duì)完全平方公式的理解,同時(shí)感知“整體”思想在分解因式中的應(yīng)用。
?。ㄋ模╇S堂練習(xí),鞏固新知
?。ˋ)練習(xí):把下列多項(xiàng)式中,哪幾個(gè)是完全平方式?請(qǐng)把是完全平方式的多項(xiàng)式因式分解(1)x2-x+1/4(2)9a2b2-3ab+1(3)1/4m2+3mn+9n2
?。?)x-10x-25練習(xí)先由學(xué)生獨(dú)立完成,然后通過(guò)小組交流,發(fā)現(xiàn)問(wèn)題及時(shí)解決。學(xué)生在解決問(wèn)題的過(guò)程中培養(yǎng)了應(yīng)用意識(shí),加強(qiáng)了知識(shí)落實(shí),突出了重點(diǎn)。
?。˙)分解因式:(1)x2-12xy+36y2(2)16a4+24a2b2+9b4(3)-2xy-x2-y2(4)4-12(x-y)+9(x-y)2例3在學(xué)生預(yù)習(xí)的前提下,由學(xué)生分析每一步的理由,明確:結(jié)果要化簡(jiǎn);分解要徹底,體會(huì)其中的整體思想。然后練習(xí)(1)(2)兩個(gè)同類(lèi)型的題目。學(xué)生在交流與實(shí)踐中突破了難點(diǎn)。安排的習(xí)題題型不復(fù)雜,直接運(yùn)用公式不超過(guò)兩次,習(xí)題難易有梯度,滿(mǎn)足不同層次的同學(xué)的需要。
?。ㄎ澹w納小結(jié),形成體系先通過(guò)小組討論本節(jié)課的知識(shí)及注意問(wèn)題,然后學(xué)生自由發(fā)言、互相補(bǔ)充,我進(jìn)行修正、精煉闡述。這樣,小結(jié)既梳理了知識(shí),又點(diǎn)明了本節(jié)課的學(xué)習(xí)要點(diǎn),同時(shí)使學(xué)生對(duì)本節(jié)知識(shí)體系也有了一個(gè)清晰的認(rèn)識(shí)。最后剩余5-6分鐘進(jìn)行當(dāng)堂檢測(cè)。
(六)作業(yè)分層,全面提升:采用分層布置作業(yè),滿(mǎn)足不同層次的同學(xué)的需要。
《因式分解》說(shuō)課稿4
一、說(shuō)教材
1、說(shuō)教材的地位與作用。
我今天說(shuō)課的內(nèi)容是浙教版數(shù)學(xué)七年級(jí)下冊(cè)第六章第一節(jié)內(nèi)容《因式分解》。因式分解就整個(gè)數(shù)學(xué)而言,它是打開(kāi)整個(gè)代數(shù)寶庫(kù)的一把鑰匙。就本節(jié)課而言,著重闡述了兩個(gè)方面,一是因式分解的概念,二是與整式乘法的相互關(guān)系。它是在學(xué)生掌握了因數(shù)分解、整式乘法的基礎(chǔ)上來(lái)討論因式分解概念,通過(guò)這節(jié)課的學(xué)習(xí),不僅使學(xué)生掌握因式分解的概念和原理,而且又為后面學(xué)習(xí)分式、解方程及代數(shù)式的恒等變形作鋪墊。因此,它起到了承上啟下的作用。
二、說(shuō)目標(biāo)
1、教學(xué)目標(biāo)。
《新課標(biāo)》指出“初中數(shù)學(xué)的教學(xué),不僅要使學(xué)生學(xué)好基礎(chǔ)知識(shí),發(fā)展能力,還要注意培養(yǎng)學(xué)生初步的辯證唯物主義觀(guān)點(diǎn)?!币虼?,根據(jù)本節(jié)內(nèi)容所處的地位,我定如下教學(xué)目標(biāo):
知識(shí)目標(biāo):理解因式分解的概念和意義,掌握因式分解與整式乘法之間的關(guān)系。
能力目標(biāo):①經(jīng)歷從分解因數(shù)到分解因式的類(lèi)比過(guò)程,培養(yǎng)學(xué)生的觀(guān)察、發(fā)現(xiàn)、類(lèi)比、化歸、概括等能力;
?、谕ㄟ^(guò)對(duì)因式分解與整式乘法的關(guān)系的理解,克服學(xué)生的思維定勢(shì),培養(yǎng)他們的逆向思維能力;
情感目標(biāo):培養(yǎng)學(xué)生樂(lè)于探究,合作的習(xí)慣,體驗(yàn)探索成功,感受到成功的樂(lè)趣。
2、教重點(diǎn)與難點(diǎn)。
重點(diǎn)是因式分解的概念。理由是理解因式分解的概念的本質(zhì)屬性是學(xué)習(xí)整章因式分解的靈魂。
難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,理由是學(xué)生由整式乘法到因式分解的變形是一個(gè)逆向思維。在前面學(xué)了較長(zhǎng)時(shí)間的整式乘法,造成思維定勢(shì),學(xué)生容易產(chǎn)生“倒攝抑制”作用,阻礙學(xué)生新概念的形成。
三、說(shuō)教法
1、教法分析
針對(duì)初一學(xué)生的年齡特點(diǎn)和心理特征,以及他們的知識(shí)水平,我采用啟發(fā)式、發(fā)現(xiàn)法等教學(xué)方法,培養(yǎng)學(xué)生分析問(wèn)題,解決問(wèn)題的能力。同時(shí)遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線(xiàn)的'教學(xué)原則。
2、學(xué)法指導(dǎo)
在教師的啟發(fā)下,讓學(xué)生成為行為主體。正如《新課標(biāo)》所要求的,讓學(xué)生“動(dòng)手實(shí)踐、自主探索、合作交流”。
3、教學(xué)手段
采用多媒體輔助教學(xué),增加課堂容量,提高教學(xué)效果。
四、說(shuō)教學(xué)過(guò)程
本節(jié)課教學(xué)過(guò)程分以下六個(gè)環(huán)節(jié):
創(chuàng)設(shè)情景,引出新知;觀(guān)察分析,探究新知;
師生互動(dòng),運(yùn)用新知;強(qiáng)化訓(xùn)練,掌握新知;
整理知識(shí),形成結(jié)構(gòu);布置作業(yè),鞏固提高。
具體過(guò)程設(shè)計(jì)如下:
第一環(huán)節(jié):創(chuàng)設(shè)情景,引出新知
1、我先出示幾個(gè)整式乘法的練習(xí),讓學(xué)生做。教師巡視。
學(xué)生完成后,教師引導(dǎo):把上述等式逆過(guò)來(lái)看一看還成立嗎?
△設(shè)計(jì)意圖:安排以上練習(xí):一是復(fù)習(xí)整式的乘法,激活學(xué)生原有整式乘法的認(rèn)知結(jié)構(gòu),滿(mǎn)足“溫故而知新”的教學(xué)原理。二是為本節(jié)課目標(biāo)的達(dá)成作好鋪墊。在此基礎(chǔ)上引出課題——因式分解。
第二環(huán)節(jié):觀(guān)察分析,探究新知
2、再讓學(xué)生練習(xí):當(dāng)a=101,b=99時(shí),求a2-b2的值.教師巡視,并代表性地抽取兩名學(xué)生板演,給出兩種解法。
△設(shè)計(jì)意圖:安排這一過(guò)程是想利用對(duì)比分析,讓學(xué)生體會(huì),把a(bǔ)2-b2化為整式積的形式,會(huì)給計(jì)算帶來(lái)簡(jiǎn)便,順應(yīng)了因式分解概念的引出。
3、問(wèn)題是數(shù)學(xué)的心臟,而一個(gè)好的問(wèn)題的提出,將會(huì)使學(xué)生產(chǎn)生求知欲,引發(fā)教學(xué)高潮,是學(xué)生知識(shí)及能力獲得發(fā)展的有效動(dòng)力。故在教因式分解概念時(shí),我設(shè)計(jì)以下兩個(gè)問(wèn)題:
?。?)你能?chē)L試把a(bǔ)2-b2化成幾個(gè)整式的積的形式嗎?并與小學(xué)所學(xué)的因數(shù)分解作比較。
(2)因式分解與整式乘法有什么關(guān)系?
讓學(xué)生分四人小組討論。歸納因式分解的定義。
一個(gè)多項(xiàng)式→幾個(gè)整式+積→因式分解
4、教師板書(shū)板書(shū):
師生歸納要注意的問(wèn)題:
?。?)因式分解是對(duì)多項(xiàng)式而言的一種變形;(2)因式分解的結(jié)果仍是整式;
?。?)因式分解的結(jié)果必是一個(gè)積;(4)因式分解與整式乘法正好相反。
△設(shè)計(jì)意圖:通過(guò)類(lèi)比,讓學(xué)生進(jìn)一步理解因式分解是整式乘法的逆運(yùn)算,培養(yǎng)學(xué)生逆向思維。
第三環(huán)節(jié):師生互動(dòng),運(yùn)用新知為了讓學(xué)生進(jìn)一步理解因式分解是整式乘法的逆運(yùn)算,培養(yǎng)學(xué)生逆向思維。
我特設(shè)三個(gè)例題,這幾個(gè)題目完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過(guò)程,使學(xué)生真正成為學(xué)習(xí)的主體。
△設(shè)計(jì)意圖:通過(guò)例1、例2羅列一些似是而非、容易產(chǎn)生錯(cuò)誤的對(duì)象讓學(xué)生辨析,讓學(xué)生進(jìn)一步體會(huì)整式乘法與因式分解的互逆關(guān)系。促使他們認(rèn)識(shí)概念的本質(zhì)、確定概念的外延,從而形成良好的認(rèn)知結(jié)構(gòu)。通過(guò)例3體會(huì)用分解因式解決相關(guān)問(wèn)題的簡(jiǎn)捷性。
第四環(huán)節(jié):強(qiáng)化訓(xùn)練,掌握新知
數(shù)學(xué)家 華羅庚 先生說(shuō)過(guò):“學(xué)數(shù)學(xué)而不練,猶如入寶山而空返”。適當(dāng)?shù)撵柟绦?,?yīng)用性練習(xí)是學(xué)習(xí)新知識(shí),掌握新知識(shí)所必不可少的。為了促進(jìn)學(xué)生對(duì)新知識(shí)的理解和掌握,我及時(shí)安排學(xué)生完成兩個(gè)練習(xí)。
△設(shè)計(jì)意圖:通過(guò)這兩個(gè)練習(xí)讓學(xué)生學(xué)會(huì)辨析因式分解這種變形。使學(xué)生進(jìn)一步理解和掌握因式分解,為下一節(jié)提取公因式法進(jìn)行因式分解打基礎(chǔ);同時(shí)又訓(xùn)練、培養(yǎng)和發(fā)展學(xué)生的基本技能和能力。
第五環(huán)節(jié):整理知識(shí),形成結(jié)構(gòu)。
最后我設(shè)計(jì)了一個(gè)表格的形式進(jìn)行歸納小結(jié)。使學(xué)生對(duì)知識(shí)的掌握上升為一種能力,并納入已有的認(rèn)知結(jié)構(gòu),同時(shí)也培養(yǎng)了學(xué)生的概括提煉能力。
第六環(huán)節(jié):布置作業(yè),鞏固提高。
在作業(yè)上我布置了看書(shū)、作業(yè)本、思考題。這樣既有利于學(xué)生鞏固所學(xué)內(nèi)容,又讓不同層次的學(xué)生得到相應(yīng)的發(fā)展。
五、說(shuō)板書(shū)
《因式分解》說(shuō)課稿5
一、說(shuō)教材
1、關(guān)于地位與作用。
本說(shuō)課的內(nèi)容是數(shù)學(xué)第二冊(cè)7.1《因式分解》。因式分解不言而喻,就整個(gè)數(shù)學(xué)而言,它是打開(kāi)整個(gè)代數(shù)寶庫(kù)的一把鑰匙。就本節(jié)課而言,著重闡述了兩個(gè)方面,一是因式分解的概念,二是與整式乘法的相互關(guān)系。它是繼乘法的基礎(chǔ)上來(lái)討論因式分解概念,繼而,通過(guò)探究與整式乘法的關(guān)系,來(lái)尋求因式分解的原理。這一思想實(shí)質(zhì)貫穿后繼學(xué)習(xí)的各種因式分解方法。通過(guò)這節(jié)課的學(xué)習(xí),不僅使學(xué)生掌握因式分解的概念和原理,而且又為后面學(xué)習(xí)因式分解作好了充分的準(zhǔn)備。因此,它起到了承上啟下的作用。
2、關(guān)于教學(xué)目標(biāo)。
根據(jù)因式分解一節(jié)課的內(nèi)容,對(duì)于掌握各種因式分解的方法,乃至整個(gè)代數(shù)教學(xué)中的地位和作用,特制定如下教學(xué)目標(biāo):
?。ㄒ唬┲R(shí)與技能目標(biāo):
?、倭私庖蚴椒纸獾谋匾?;
?、谏羁汤斫庖蚴椒纸獾母拍?;
?、壅莆諒恼匠朔ǖ贸鲆蚴椒纸獾姆椒ā?/p>
?。ǘw驗(yàn)性目標(biāo):
①感受整式乘法與因式分解矛盾的對(duì)立統(tǒng)一觀(guān)點(diǎn);
?、隗w驗(yàn)由和差到積的形成過(guò)程,初步獲得因式分解的經(jīng)驗(yàn)。
3、關(guān)于教學(xué)重點(diǎn)與難點(diǎn)。
重點(diǎn)是因式分解的概念。理由是理解因式分解的概念的本質(zhì)屬性是學(xué)習(xí)整章因式分解的靈魂,難點(diǎn)是理解因式分解與整式乘法的相互關(guān)系,以及它們之間的關(guān)系進(jìn)行因式分解的思想。理由是學(xué)生由乘法到因式分解的變形是一個(gè)逆向思維。在前一章整式乘法的較長(zhǎng)時(shí)間的`學(xué)習(xí),造成思維定勢(shì),學(xué)生容易產(chǎn)生“倒攝抑制”作用,阻礙學(xué)生新概念的形成。
4、關(guān)于教法與學(xué)法。
教法與學(xué)法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來(lái)相應(yīng)的學(xué)法。因此,我們應(yīng)該重點(diǎn)闡述教法。一節(jié)課不能是單一的教法,教無(wú)定法。但遵循的原則——啟發(fā)性原則是永恒的。在教師的啟發(fā)下,讓學(xué)生成為行為主體。正如新《數(shù)學(xué)課程標(biāo)準(zhǔn)》所要求的,讓學(xué)生“動(dòng)手實(shí)踐、自主探索、合作交流”。在上述思想為出發(fā)點(diǎn),就本節(jié)課而言,不妨利用對(duì)比教學(xué),讓學(xué)生體驗(yàn)因式分解的必要性;利用類(lèi)比教學(xué),以概念的形曾成和同化相結(jié)合,促進(jìn)學(xué)生對(duì)因式分解概念的理解;利用嘗試教學(xué),讓學(xué)生主動(dòng)暴露思維過(guò)程,及時(shí)得到信息的反饋。教師
充分依照學(xué)生的認(rèn)知心理,不斷創(chuàng)設(shè)“最近發(fā)展區(qū)”,造就認(rèn)知沖突,促進(jìn)學(xué)生不斷發(fā)現(xiàn)、不斷達(dá)到知識(shí)的內(nèi)化。
不管用什么教法,一節(jié)課應(yīng)該不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終對(duì)學(xué)生充滿(mǎn)情感創(chuàng)造和諧的課堂氛圍,這是最重要的。二、說(shuō)過(guò)程。
第一環(huán)節(jié),導(dǎo)入階段。
教師出示下列各題,讓學(xué)生練習(xí)。
計(jì)算:(1)(a+b)^2;(2)(5a+2b)(5a–2b);(3)m(a+b)。
學(xué)生完成后,教師引導(dǎo):把上述等式逆過(guò)來(lái)看,即
?。?)a^2+2ab+b^2=(a+b)^2;(2)25a^2–4b^2=(5a+2b)(5a–2b);(3)ma+mb=m(a+b)。
成立嗎?
安排這一過(guò)程的意圖是:一是復(fù)習(xí)整式的乘法,激活學(xué)生原有整式乘法的認(rèn)知結(jié)構(gòu),促使新舊認(rèn)知結(jié)構(gòu)的聯(lián)結(jié),滿(mǎn)足“溫故而知新”的教學(xué)原理。二是為本節(jié)課目標(biāo)的達(dá)成作好墊鋪。在此基礎(chǔ)上引出課題——因式分解。
第二環(huán)節(jié),新課階段。
1、對(duì)比練習(xí)。讓學(xué)生練習(xí):
當(dāng)a=101,b=99時(shí),求a2—b2的值。教師巡視,并代表性地抽取兩名學(xué)生板演,給出兩種解法。
教師安排這一過(guò)程的意圖是:利用對(duì)比分析,讓學(xué)生體會(huì),把a(bǔ)2—b2化為整式積的形式,給計(jì)算帶來(lái)的優(yōu)越性,順應(yīng)了因式分解概念的引出。
2、類(lèi)比練習(xí)。讓學(xué)生練習(xí):
分解下列三個(gè)數(shù)的質(zhì)因數(shù)(1)42;(2)56;(3)11。
在此,教師幫助歸納:42與56兩個(gè)數(shù)可以化為幾個(gè)整數(shù)的積,叫做因數(shù)分解。本身是質(zhì)數(shù)的數(shù)就不能再分解。同時(shí)設(shè)疑,對(duì)于一個(gè)多項(xiàng)式能化為幾個(gè)整式的積的形式嗎?在師生互動(dòng)的基礎(chǔ)上,要求學(xué)生翻開(kāi)課本閱讀課本因式分解定義。
3、創(chuàng)設(shè)問(wèn)題情景。
同學(xué)們,我們不能迷信課本,課本的因式分解定義有毛病,請(qǐng)大家逐字研讀,找出問(wèn)題。讓學(xué)生分四人小組討論。(事實(shí)上正確)提問(wèn)學(xué)生討論結(jié)果,課本定義是正確的。
板書(shū):
一個(gè)多項(xiàng)式→幾個(gè)整式+積→因式分解
師生歸納要注意的問(wèn)題:
(1)因式分解是對(duì)多項(xiàng)式而言的一種變形;
(2)因式分解的結(jié)果仍是整式;
?。?)因式分解的結(jié)果必是一個(gè)積;
(4)因式分解與整式乘法正好相反。
板書(shū):
4、學(xué)生練習(xí)課本p152練習(xí)第1、2兩題。
教師安排這一過(guò)程意圖是:通過(guò)對(duì)比教學(xué),提高學(xué)生對(duì)因式分解的知覺(jué)水平;通過(guò)具體數(shù)的分解這一類(lèi)比教學(xué),產(chǎn)生正遷移,認(rèn)識(shí)新概,符合學(xué)生概念形成的認(rèn)知規(guī)律;通過(guò)故設(shè)偏差法,制造認(rèn)知沖突,讓學(xué)生咬文嚼字因式分解概念,引導(dǎo)學(xué)生主動(dòng)探求,造求學(xué)生自主學(xué)習(xí)的積極勢(shì)態(tài),促進(jìn)學(xué)生對(duì)概念本質(zhì)屬性的理解;讓學(xué)生用正反習(xí)題的練習(xí),達(dá)到知覺(jué)水平上的運(yùn)用,促使對(duì)因式分解概念的理解。從而使本節(jié)課達(dá)到高潮。
第三環(huán)節(jié),嘗試練習(xí),信息反饋。
讓學(xué)生嘗試練習(xí):課本p152第3題,并引導(dǎo)中下學(xué)生看p152例題,教師及時(shí)點(diǎn)撥講評(píng)。
教師安排這一過(guò)程,完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過(guò)程,展現(xiàn)學(xué)生生動(dòng)活潑、主動(dòng)求知和富有的個(gè)性,使學(xué)生真正成為學(xué)習(xí)的主體,使因式分解與整式的乘法的關(guān)系得到正強(qiáng)化。
第四環(huán)節(jié),小結(jié)階段。
這是最后的一個(gè)環(huán)節(jié),教師出示“想一想”:下列式子從左邊到右邊是因式分解嗎,為什么?
學(xué)生展開(kāi)討論,得到下列結(jié)論:
A、左邊是乘法,而右邊是差,不是積;
B、左右兩邊都不是整式;
C、從右邊到左邊是利用了因式分解的變形方法進(jìn)行分解。
由此可知,上式不是因式分解。進(jìn)而,教師呈現(xiàn)因式分解定義。
教師安排這一過(guò)程意圖是:學(xué)生一般到臨近下課,大腦處于疲勞狀態(tài),注意力開(kāi)始分散。教師如果把定義及要注意的問(wèn)題進(jìn)行小結(jié)后直接拋給學(xué)生,只能是是似而非。通過(guò)讓學(xué)生練習(xí),在練習(xí)中歸納,再一次點(diǎn)燃學(xué)生即將沉睡而去的心理興奮點(diǎn),點(diǎn)燃學(xué)生主題意識(shí)的再度爆發(fā)。同時(shí),學(xué)生的知識(shí)學(xué)習(xí)得到了自我評(píng)價(jià)和鞏固,成為本節(jié)課的最后一個(gè)亮點(diǎn)。
《因式分解》說(shuō)課稿6
各位專(zhuān)家、各位老師:
大家好!
今天我說(shuō)課的內(nèi)容是人教版七年級(jí)數(shù)學(xué)下冊(cè)第六章《因式分解》第一節(jié)課的內(nèi)容·
一、說(shuō)教材
(一)教材的地位與作用
因式分解是代數(shù)式的一種重要恒等變形·它是學(xué)習(xí)分式的基礎(chǔ),又在恒等變形、代數(shù)式的運(yùn)算、解方程、函數(shù)中有廣泛的應(yīng)用,就本節(jié)課而言,著重闡述了兩個(gè)方面,一是因式分解的概念,二是與整式乘法的相互關(guān)系·它是繼整式乘法的基礎(chǔ)上來(lái)討論因式分解概念,繼而,通過(guò)探究與整式乘法的關(guān)系,來(lái)尋求因式分解的原理·這一思想實(shí)質(zhì)貫穿后繼學(xué)習(xí)的各種因式分解方法·通過(guò)本節(jié)課的學(xué)習(xí),不僅使學(xué)生掌握因式分解的概念和原理,而且又為后面學(xué)習(xí)因式分解作好了充分的準(zhǔn)備·因此,它起到了承上啟下的作用·
(二)教學(xué)目標(biāo)
根據(jù)新課程標(biāo)準(zhǔn)以及因式分解這一節(jié)課的內(nèi)容,對(duì)于掌握各種因式分解的方法,乃至整個(gè)代數(shù)教學(xué)中的地位和作用,我制定了以下教學(xué)目標(biāo):
1·知識(shí)目標(biāo):
理解因式分解的概念;掌握從整式乘法得出因式分解的方法·
2·能力目標(biāo):
培養(yǎng)分工協(xié)作及合作能力,鍛煉學(xué)生的語(yǔ)言表達(dá)及用數(shù)學(xué)語(yǔ)言的能力;培養(yǎng)學(xué)生觀(guān)察、分析、歸納的能力,并向?qū)W生滲透對(duì)比、類(lèi)比的數(shù)學(xué)思想方法·
3·情感目標(biāo):
培養(yǎng)學(xué)生積極主動(dòng)參與的意識(shí),使學(xué)生形成自主學(xué)習(xí)、合作學(xué)習(xí)的良好的學(xué)習(xí)習(xí)慣;體會(huì)事物之間互相轉(zhuǎn)化的辨證思想,從而初步接受對(duì)立統(tǒng)一觀(guān)點(diǎn)·
(三)教學(xué)重點(diǎn)與難點(diǎn)·
本節(jié)課理解因式分解的概念的本質(zhì)屬性是學(xué)習(xí)整章因式分解的關(guān)鍵,而學(xué)生由乘法到因式分解的變形是一個(gè)逆向思維·在前一章整式乘法的較長(zhǎng)時(shí)間的學(xué)習(xí),造成思維定勢(shì),學(xué)生容易產(chǎn)生“倒攝抑制”作用,阻礙學(xué)生新概念的形成·因此我將本課的學(xué)習(xí)重點(diǎn)、難點(diǎn)確定為:
教學(xué)的重點(diǎn):因式分解的概念
教學(xué)的難點(diǎn):認(rèn)識(shí)因式分解與整式乘法的關(guān)系,并能意識(shí)到可以運(yùn)用整式乘法的一系列法則來(lái)解決因式分解的各種問(wèn)題·
二、說(shuō)學(xué)情
1·學(xué)生已經(jīng)學(xué)習(xí)整式的乘法、乘法公式以及整式的除法的學(xué)習(xí)·
2·八年級(jí)的學(xué)生接受能力、思維能力、自我控制能力都有很大變化和提高,自學(xué)能力較強(qiáng),通過(guò)類(lèi)比學(xué)習(xí)加快知識(shí)的學(xué)習(xí)·
三、說(shuō)教法學(xué)法
教發(fā)與學(xué)法是互相和統(tǒng)一的,正如新《數(shù)學(xué)課程標(biāo)準(zhǔn)》所要求的,讓學(xué)生“動(dòng)手實(shí)踐、自主探索、合作交流 ”·就本節(jié)課而言,在教法上不妨利用對(duì)比教學(xué),讓學(xué)生體驗(yàn)因式分解概念產(chǎn)生的過(guò)程;利用類(lèi)比教法、講練結(jié)合的教學(xué)方法,以概念的形成和同化相結(jié)合,促進(jìn)學(xué)生對(duì)因式分解概念的理解;利用嘗試教學(xué),讓學(xué)生主動(dòng)暴露思維過(guò)程,及時(shí)得到信息的反饋·不管用什么教法,一節(jié)課應(yīng)該不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終對(duì)學(xué)生充滿(mǎn)情感、創(chuàng)造和諧的課堂氛圍,這是最重要的·
四、教學(xué)過(guò)程·
本節(jié)課教學(xué)過(guò)程分以下六個(gè)環(huán)節(jié):
創(chuàng)設(shè)情景,引出新知; 觀(guān)察分析,探究新知;
師生互動(dòng),運(yùn)用新知; 強(qiáng)化訓(xùn)練,掌握新知;
整理知識(shí),形成結(jié)構(gòu); 布置作業(yè),鞏固提高·
具體過(guò)程設(shè)計(jì)如下:
第一環(huán)節(jié):創(chuàng)設(shè)情景,引出新知
我先出示幾個(gè)整式乘法的練習(xí),讓學(xué)生做·教師巡視·
學(xué)生完成習(xí),一是復(fù)習(xí)整式的乘法,激活學(xué)生原有整式乘法的認(rèn)知結(jié)構(gòu),滿(mǎn)足“溫故而知新”的后,教師引導(dǎo):把上述等式逆過(guò)來(lái)看一看還成立嗎?
安排這樣的練教學(xué)原理·二是為本節(jié)課目標(biāo)的達(dá)成作好鋪墊·在此基礎(chǔ)上引出課題——因式分解·
第二環(huán)節(jié):觀(guān)察分析,探究新知
全班兩個(gè)組,比賽看哪一組算的快,當(dāng)a=101,b=99時(shí),第一組求a2—b2的值,第二組求(a+b)(a—b)·教師巡視,代表性地抽取兩名學(xué)生板演,給出兩種解法·
安排這一過(guò)程是想利用對(duì)比分析,讓學(xué)生體會(huì),把a(bǔ)2—b2化為整式積的形式,會(huì)給計(jì)算帶來(lái)簡(jiǎn)便,順應(yīng)了因式分解概念的引出·
問(wèn)題是數(shù)學(xué)的心臟,而一個(gè)好的.問(wèn)題的提出,將會(huì)使學(xué)生產(chǎn)生求知欲,引發(fā)教學(xué)高潮,是學(xué)生知識(shí)及能力獲得發(fā)展的有效動(dòng)力·故在教因式分解概念時(shí),我設(shè)計(jì)以下兩個(gè)問(wèn)題:
?。?) 你能?chē)L試把a(bǔ)2—b2化成幾個(gè)整式的積的形式嗎?并與小學(xué)所學(xué)的因數(shù)分解作比較·
?。?) 因式分解與整式乘法有什么關(guān)系?
讓學(xué)生分四人小組討論·歸納因式分解的定義·
一個(gè)多項(xiàng)式→幾個(gè)整式+積→因式分解
我特設(shè)三個(gè)例題,這幾個(gè)題目完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過(guò)程,使學(xué)生真正成為學(xué)習(xí)的主體·通過(guò)例1、例2羅列一些似是而非、容易產(chǎn)生錯(cuò)誤的對(duì)象讓學(xué)生辨析,讓學(xué)生進(jìn)一步體會(huì)整式乘法與因式分解的互逆關(guān)系·促使他們認(rèn)識(shí)概念的本質(zhì)、確定概念的外延,從而形成良好的認(rèn)知結(jié)構(gòu)·通過(guò)例3體會(huì)用分解因式解決相關(guān)問(wèn)題的簡(jiǎn)捷性·
第三環(huán)節(jié):強(qiáng)化訓(xùn)練,掌握新知
數(shù)學(xué)家華羅庚先生說(shuō)過(guò):“學(xué)數(shù)學(xué)而不練,猶如入寶山而空返”·適當(dāng)?shù)撵柟绦?,?yīng)用性練習(xí)是學(xué)習(xí)新知識(shí),掌握新知識(shí)所必不可少的·為了促進(jìn)學(xué)生對(duì)新知識(shí)的理解和掌握,我及時(shí)安排學(xué)生完成兩個(gè)練習(xí)·通過(guò)這兩個(gè)練習(xí)讓學(xué)生學(xué)會(huì)辨析因式分解這種變形·使學(xué)生進(jìn)一步理解和掌握因式分解,為下一節(jié)提取公因式法進(jìn)行因式分解打基礎(chǔ);同時(shí)又訓(xùn)練、培養(yǎng)和發(fā)展學(xué)生的基本技能和能力·
第四環(huán)節(jié):整理知識(shí),形成結(jié)構(gòu)·
最后我設(shè)計(jì)了一個(gè)表格的形式進(jìn)行歸納小結(jié)·使學(xué)生對(duì)知識(shí)的掌握上升為一種能力,并納入已有的認(rèn)知結(jié)構(gòu),同時(shí)也培養(yǎng)了學(xué)生的概括提煉能力·
第五環(huán)節(jié):布置作業(yè),鞏固提高·
在作業(yè)上我布置了看書(shū)、作業(yè)本、思考題·這樣既有利于學(xué)生鞏固所學(xué)內(nèi)容,又讓不同層次的學(xué)生得到相應(yīng)的發(fā)展·
五、說(shuō)板書(shū)
在本節(jié)課中我將采用提綱式的板書(shū)設(shè)計(jì),因?yàn)樘峋V式—條理清楚、從屬關(guān)系分明,給人以清晰完整的印象,便于學(xué)生對(duì)教材內(nèi)容和知識(shí)體系的理解和記憶·
《因式分解》說(shuō)課稿6篇 因式分解的說(shuō)課稿人教版相關(guān)文章:
★ 因式分解教學(xué)反思范文3篇(21.2.3因式分解法教學(xué)反思)
★ 《因式分解》說(shuō)課稿7篇(因式分解的說(shuō)課稿人教版)
★ 初中數(shù)學(xué)因式分解教案3篇 初中數(shù)學(xué)因式分解試講10分鐘
★ 因式分解教案范文4篇 因式分解數(shù)學(xué)教案