下面是范文網(wǎng)小編分享的中心對稱教學反思6篇(中心對稱第一課時教學反思),以供參考。

中心對稱教學反思1
一、教材分析
?。ㄒ唬?、地位與作用
本節(jié)課主要學習中心對稱的概念和性質(zhì)。中心對稱是旋轉(zhuǎn)變換的特殊形式,所以已經(jīng)學過的軸對稱變換和旋轉(zhuǎn)的概念及性質(zhì),為本節(jié)課的學習起了鋪墊作用,掃清了學習障礙,本節(jié)課的知識也為即將研究的中心對稱圖形、關(guān)于原點對稱的點的坐標以及利用平移、軸對稱、旋轉(zhuǎn)的組合進行圖案設(shè)計奠定了堅實的基礎(chǔ)。
?。ǘ?、教學目標分析
知識與技能:理解中心對稱,對稱中心,對稱點等概念;掌握中心對稱的性質(zhì);應用中心對稱的概念及性質(zhì),解決實際問題。
過程與方法::經(jīng)歷探究發(fā)現(xiàn)中心對稱性質(zhì)的過程,提高觀察、分析、抽象、概括等能力;體驗猜想、類比等數(shù)學思想。感悟數(shù)學來源于生活,又服務于生活的真諦。
情感態(tài)度與價值觀:欣賞數(shù)學的美學價值,樹立學好數(shù)學的信心
?。ㄈ┙虒W重、難點分析
重點:掌握中心對稱的概念及性質(zhì)
難點:準確理解概念及性質(zhì),利用其解決實際問題。
二、教法與學法分析:
?。ㄒ唬?、學情分析:本節(jié)課是在學生學習了旋轉(zhuǎn)的基礎(chǔ)上,從旋轉(zhuǎn)變換引入中心對稱的,學生在學習旋轉(zhuǎn)的過程中,已經(jīng)充分體驗了觀察、測量、旋轉(zhuǎn)畫圖等活動,經(jīng)歷了在操作活動中探索性質(zhì)的過程,獲得了初步的數(shù)學活動經(jīng)驗和體驗,具備了一定的主動參與、合作交流的意識和初步的觀察、分析、抽象概括能力。
?。ǘ⒔虒W方法:結(jié)合本節(jié)課的教學內(nèi)容,以及學生的心理特點和認知水平,主要采用啟發(fā)探究和直觀演示的教學方法,創(chuàng)設(shè)情境啟導學生觀察、探索、抽象、分析中心對稱的概念,揭示刻畫中心對稱的性質(zhì)。
?。ㄈW習方法:新課標明確提出要培養(yǎng)“可持續(xù)發(fā)展的學生”,因此教師要有組織、有目的、有針對性的引導學生并參入到學習活動中,鼓勵學生采用動手實踐、自主探索,合作交流的學習方式,培養(yǎng)學生“動手”、“動腦”、“動口”的習慣與能力,使學生真正成為學習的主人。
?。ㄋ模┹o助手段:
利用多媒體教學平臺來配合教學,就可以把抽象的內(nèi)容變得更具體,為學生提供豐富的感知材料,培養(yǎng)學生數(shù)學直覺能力。
三、教學過程
(一)探究問題,形成概念
第一步:為了使學生關(guān)注到概念的實際背景,首先利用多媒體演示2組圖片的運動過程,并提出如下問題,力圖在課一開始就緊緊抓住學生。
問題1:觀察下面的2組圖形,看一看各組中2個圖形的形狀、大小是否相同?怎樣將一個圖形旋轉(zhuǎn)得到另一個圖形?
很自然的從旋轉(zhuǎn)變換的角度引入本節(jié)課題:中心對稱。讓學生體會到知識間的內(nèi)在聯(lián)系,中心對稱實際上是旋轉(zhuǎn)變換的一種特殊形式,滲透了從一般到特殊的數(shù)學思想方法。
第二步:教師再次展示一組圖片,演示旋轉(zhuǎn)的過程,進一步提出問題,給學生一定的思考和討論的空間。接下來從具體圖案中抽象出兩個三角形,提問:
問題2:
(1)把其中一個圖案繞點O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?
(2)線段AC,BD相交于點O,OA=OC,OB=OD.把 △OCD繞點O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?
引導學生分析問題,從而把以下三點逐一擊破:
1、兩個圖形;
2、(選定)一個點;
3、兩個圖形,一個圖形繞著某個點旋轉(zhuǎn)180°后能與另一個圖形重合。
?。ǘ┨剿餮芯浚瑲w納性質(zhì)
第一步:為了讓學生在理解概念的同時,探索發(fā)現(xiàn)中心對稱的性質(zhì)。教師引導學生動手操作,完成63頁探究:旋轉(zhuǎn)三角板,畫關(guān)于點O對稱的`兩個三角形。然后利用畫好的學具,分別連接對應點AA’、BB’、CC’。提問:
?。?)點O在線段AA’上嗎?如果在,在什么位置?
?。?)△ABC與△A’B’C’有什么關(guān)系?
?。?)你能從中得到什么結(jié)論?
第二步:為了更好的深化學生對知識的理解,接下來讓學生對比中心對稱與軸對稱的聯(lián)系與區(qū)別,提出問題:中心對稱與軸對稱有什么區(qū)別?又有什么聯(lián)系?
問題提出后,讓學生小組內(nèi)進行充分的討論交流,共同完成事先準備好的圖表。老師利用投影儀進行展示,并讓小組選代表進行說明。對于沒有歸納完整的,其他組的同學進行補充,對于完成較好的小組,應給予及時的表揚和鼓勵。
?。ㄈ﹩栴}探索,解釋應用
為加深學生對概念和性質(zhì)的理解,設(shè)計了如下例題:求作已知點A關(guān)于點O的對稱點A′。學生大都能作出點A關(guān)于點O的對稱點A′,然后請一名學生在黑板上完成線段的中心對稱線段的作圖,并寫出作法。教師利用多媒體進行演示,規(guī)范作圖步驟。待學生完成作圖后,進一步提問:
1、一個點繞對稱中心旋轉(zhuǎn)180o,得到的是一個平角,這表示什么?
2、你是如何理解“對稱點所連線段都經(jīng)過對稱中心,而且被對稱中心所平分”的?
3、怎樣作出△ABC關(guān)于點O對稱的△A′B′C′呢?
問題提出后,適當?shù)却瑢W生紛紛發(fā)表自己的見解,暢談如何作△ABC關(guān)于點O對稱的△A′B′C′。
這道題是利用中心對稱的性質(zhì)進行作圖,使學生能熟練畫出兩個關(guān)于某點成中心對稱的圖形,鞏固學生的作圖能力,向?qū)W生滲透應用數(shù)學的觀念。
中心對稱教學反思2
著名的美國教育心理學家波斯納提出了一個教師成長公式:教師成長=經(jīng)驗+反思,《中心對稱圖形》教學反思。每次上完課后,反思自己的教學行為,總結(jié)教學中的得與失,這既是一種學習,也是在不斷豐富自己的教學素養(yǎng)和提升自己的教學能力。上周,我上了一節(jié)公開課《中心對稱圖形》,現(xiàn)在就這節(jié)課我談兩個“做法”、兩個“問題”、兩個做法:
?。ㄒ唬┨幪幜粜慕詫W問本節(jié)課的設(shè)計上,我充分體現(xiàn)了“中心對稱圖形”這個重點,圍繞它我進行了全方位的篩選材料,這些材料都是我平時積累的結(jié)果,其中有生活中的、小學算術(shù)中的、物理內(nèi)容的、撲克牌上的、游戲里的、打油詩里的等等材料,從表面上看似乎沒有多少聯(lián)系的東西,最后都能很自然地為所統(tǒng)領(lǐng),很自然地歸屬于“中心對稱圖形”這個中心。數(shù)學是一門講究理論、講究層次和條理的學科,對于沒有真正感悟到數(shù)學之美的初中生來說,是容易枯燥的;當老師把數(shù)學和學生的生活緊密聯(lián)系起來時,孩子們才會容易產(chǎn)生共鳴,進而對數(shù)學發(fā)生興趣。因此,平時我特別注意收集跟數(shù)學有關(guān)的生活素材,以便于在教學中能簡明、有趣地說明一些難懂或易錯的數(shù)學知識。
?。ǘ┛偨Y(jié)學生的新穎解法并充分利用它在課堂教學中,我特別重視總結(jié)學生提出的問題和新穎的解法,數(shù)學問題往往是多個角度來考慮,特別是在幾何證明題中,一道題往往有多種證明方法,因此在幾何教學中,我注意例題的精選,精選出的例題在課堂中給學生充分思考的時間,充分去挖掘?qū)W生思想中蘊含的這部分的知識,然后讓學生之間交流;上課時,對于每個學生回答的問題要及時給予評價,盡可能的多鼓勵,這樣會激勵更多的學生參與到課堂中來。有時候,剛在三班上完課,又到四班上在講同樣問題,就可以給學生說這個問題是剛剛在三班某個同學回答出來的,這樣會暗示四班學生三班學生能回答的'問題我們四班同樣能回答的,人都有不服輸?shù)男睦铮@樣會激勵更多的學生參與到課堂中,同時對三班的同學也會起激勵作用,課下會有四班同學給三班學生說到這個事情的,因為好事情傳播的速度是很快的。
三班的這位同學聽說在四班的課堂上老師用到了他回答問題的方法,他至少會高興一天的,今天這樣明天也這樣,經(jīng)常這樣學生就會對這門課程保持比較高的熱情,這樣對學生有利對自己也有利啊。當一個學生的解題方法,通過我的加工拓展變成一種解題思路,每一次使用時,我就專門提出“這次我們應用某某同學的方法來解它”,對這個同學來說是莫大的心理鼓舞。有一段,我曾經(jīng)把自己學生作業(yè)中一些新穎解法匯集在一起,辦成了一個小報,轉(zhuǎn)發(fā)全年級每一個學生手里,以此來鼓舞學生、激發(fā)學生學習數(shù)學的興趣。同班學生的獨特解法上了第一期,其他學生就渴望下一期有自己的杰作,就會在作業(yè)中很努力地鉆研而不是應付。
中心對稱教學反思3
昨天我和同學們共同學習了《中心對稱圖形》一課,縱觀這一節(jié)數(shù)學課,課堂教學模式發(fā)生了根本性的變化,老師不再是簡單的知識傳授者,而是一個組織者和引導者,并調(diào)動了每一位學生的學習主動性,使他們真正成為學習的主人,積極地參與教學的每一個環(huán)節(jié),努力地探索解決問題的方法,大膽地發(fā)表自己的觀點。學生切身經(jīng)歷了“做數(shù)學”的全過程,感受了學習數(shù)學的快樂,體驗成功的喜悅。具體感受如下四點:
?。ㄒ唬⒛繕硕ㄎ粶蚀_,目標意識強。
這節(jié)課有三個目標:
1、了解中心對稱圖形的概念;
2、理解并掌握中心對稱圖形的`性質(zhì)。
3、能設(shè)計簡單的中心對稱圖形,培養(yǎng)學生的創(chuàng)新能力,體驗中心對稱圖形的美感。在由認定目標,實施目標等環(huán)節(jié)始終圍繞目標組織教學活動,效果較好。
?。ǘ?、創(chuàng)設(shè)情境,激發(fā)學生的學習興趣。
新課開始,我用學生都很熟悉的撲克牌做一個小魔術(shù),來導入新課。這一環(huán)節(jié)的設(shè)計既活躍了課堂氣氛,又讓學生初步領(lǐng)會到中心對稱圖形的特點,為學生在緊跟其后的學習中探究中心對稱圖形的特點做好了鋪墊。同時,通過這個環(huán)節(jié),也為本節(jié)課的學習留下了懸念,埋下伏筆,通過本節(jié)課的學習,最后可以解密小魔術(shù)。
?。ㄈ?、巧妙引導,自主探究,盡展數(shù)學美。
數(shù)學課程標準指出:學生有效的學習活動不能單純的依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式。正是基于這樣的認識,這種設(shè)計充分體現(xiàn)了學生為主體的教學理念,讓學生在主動探索和與他人合作探究中發(fā)現(xiàn)規(guī)律建構(gòu)新知。
俗話說“耳中聽到終覺淺,覺之此事要躬親”。我沒有直接告訴學生什么是中心對稱圖形,而是安排學生觀察圖形的的特點,找一找他們的共同特征,通過觀察、猜想、自主探究并組織交流觀察到的圖形的特點,再配上形象具體的媒體演示,從而自然地引出中心對稱圖形的概念和中心對稱圖形的性質(zhì)。學生經(jīng)過“觀察一思考一探究一概括”的學習過程,自主參與知識的發(fā)生、發(fā)展、形成的過程,使學生很好的掌握了知識。
?。ㄋ模⒍鄬泳毩?,內(nèi)化知識。
在練習中,我組織學生有層次地開展了一系列練習,通過看一看、試一試、畫一畫,做一做等形式,使學生在小組合作討論中能正確判斷給出的圖形是不是中心對稱圖形,有效的讓學生鞏固了對中心對稱圖形的認識,加深了印象。通過逐層的練習,學生不但認識了什么樣的圖形是中心對稱圖形,而且還會畫不同的中心對稱圖形。設(shè)置一些開放型練習,讓學生自己設(shè)計中心對稱圖案,并互相交流,目的在提高學生的學習興趣,提高學生的學習熱情,和加深對所學的知識的理解和掌握。
本節(jié)課我也感覺到有明顯的不足,那就是對學生積極的調(diào)動有時還是感覺力不從心,對于后進生的關(guān)注還是感覺不夠,對于媒體的使用還是不能得心應手。
課堂教學的效益永遠是我們的生命線,成功的課堂更是學生的期盼,我會站穩(wěn)課堂,站靚課堂,上出課堂教學的風采來!
中心對稱教學反思4
成功之處:
(1)本節(jié)課,我通過復習中心對稱的定義和性質(zhì),大膽的放手讓學生自主畫圖,使學生順利的找到了要學的新知識與已學知識之間的聯(lián)系,通過學生的觀察順利得到了中心對稱圖形的定義和性質(zhì),學生理解的很準確。
?。?)通過欣賞圖片,比如奧迪、現(xiàn)代等車標,精美的'地毯、風車、電風扇等,激發(fā)了學生的學習興趣。
(3)練習問題的設(shè)置能夠讓學生主動參與到學習中來,例如在判斷撲克牌中哪些是中心對稱圖形的探究活動中,師生的相互溝通調(diào)動了學生的積極性,培養(yǎng)了學生的相互合作能力;通過問題的解決,培養(yǎng)了學生獨立思考的能力,激發(fā)出學生的積極思維的火花。
(4)通過4道小練習檢測了學生對知識的掌握情況,課堂實踐證明學生掌握了中心對稱圖形的概念,會判斷一個圖形是否為中心對稱圖形。
不足之處:
(1)拓展延伸沒有進行,因為時間把握得不很理想。
?。?)創(chuàng)設(shè)情境方面做得還不足,應在這方面繼續(xù)加強,更加重視創(chuàng)設(shè)情境的作用。
中心對稱教學反思5
在教學中以出示旋轉(zhuǎn)對稱圖形為切入點,讓學生在復習旋轉(zhuǎn)對稱圖形的知識上導出新的知識,這樣有助于學生在原有的知識體系的基礎(chǔ)上構(gòu)建新的知識體系,有助于新的概念的掌握。
學生在初一下學期學習了軸對稱的.有關(guān)知識,在學習中心對稱知識時一方面要用這一知識作類比,另一方面又要防止軸對稱概念對中心對稱概念的干擾,在教學中本課在揭示了中心對稱圖形的概念,加強了和軸對稱圖形的辨析,并在練習中掌握它們的區(qū)別,讓學生在類比和辨析中更好地掌握中心對稱圖形這一概念。
中心對稱圖形的概念是本課重點,課前我和學生一起玩魔術(shù),準備四張撲克牌,三張不是中心對稱圖形的牌,一張是中心對稱圖形的牌,老師背過身,讓學生任意轉(zhuǎn)一張牌,老師都能猜出,讓學生想為什么,同學們想不想學會這個本領(lǐng)?學習這節(jié)課的知識,你也會這個本領(lǐng)了。對于剛才所提出的問題學生急于知道,但僅利用現(xiàn)有的知識技能又無法解決,從而形成認知的沖突,這就激發(fā)了他們的求知欲,使學生在問題最集中,思維最活躍的狀態(tài)下開始學習。通過一堂課的學習,在課堂結(jié)束時又回到了這個問題上,同學們明白了課前魔術(shù)表演的奧秘,也其樂融融地投入了游戲中,讓他們體味到了數(shù)學的趣味和神奇。
本課在兩個圖形成中心對稱的特征的導出由學生自主探索而得,在演示給學生兩個三角形關(guān)于點成中心對稱,讓學生觀察圖形中對應線段的位置和數(shù)量關(guān)系,對應點的連線與對稱中心的關(guān)系,然后讓學生自己通過連線測量發(fā)現(xiàn)了對應線段平行且相等,對應點的連線經(jīng)過對稱中心,且被對稱中心平分。學生通過自主活動發(fā)現(xiàn)了規(guī)律,增加了他們學習數(shù)學的信心。
我在課尾安排了讓學生欣賞生活中的中心對稱圖形,讓學生知道中心對稱圖形與人們生活密切相關(guān),而且充滿了對稱美,也讓學生知道自己也能設(shè)計這些圖形,再次讓學生體味數(shù)學的魅力——圖形美,在課后作業(yè)中布置學生搜集生活中的中心對稱圖形,并設(shè)計中心對稱圖形,讓學生將課堂中所學的知識用到生活中去。
中心對稱教學反思6
本課是明確中心對稱圖形與中心對稱的教學,我非常重視本節(jié)開頭的教學內(nèi)容,采用做游戲擺撲克的方法引入教學,激發(fā)學生的學習興趣,在進行了解中心對稱的概念時我采用了讓學生觀察分析探討,使學生從感性認識上升到理懷的認識。從實例出發(fā),展現(xiàn)知識的形成過程,使學生不會感到數(shù)學知識學習的單調(diào)乏味,逐步提高學生抽象概括的能力。
初二學生對一些“動”圖形很感興趣,為此本節(jié)采用了動畫形式,讓學生親身體驗;從而使學生易于發(fā)現(xiàn)、總結(jié)。教學時以啟發(fā)和小組討論交流為主,進行談話式的.引導,并注意利用變式練習題,準備開放性的習題配合,歸納小結(jié)注意點,以期達到調(diào)動學生學習的積極性,使學生的思維更加活躍,迸發(fā)出創(chuàng)新的火花,讓學生在理解的基礎(chǔ)上掌握中心對稱的有關(guān)知識。
為了突破重點、難點,我采用了分組討論、學生啟發(fā)、實例分析的方法讓學生自主說出來;相互補充,學會合作。培養(yǎng)了學生的良好學習習慣與和諧融洽的教學氣氛。在整個教學過程的設(shè)計中師是朋友、是合作者;講解則是學生探索結(jié)果的概括,對學生的鼓勵調(diào)動了學生的積極性。
本節(jié)在調(diào)動學生積極上還存在著一定的不足。比如:有的學生發(fā)現(xiàn)問題卻不能主動提出來。教學中的學困生雖然有了一定的進步,但還有待于提高。
中心對稱教學反思6篇(中心對稱第一課時教學反思)相關(guān)文章:
★ 語文《最后一分鐘》教學反思3篇 最后一分鐘教學設(shè)計及反思
★ 《普羅米修斯》教學反思10篇 普羅米修斯教學反思優(yōu)點與不足
★ 小學信息技術(shù)教學反思10篇(信息技術(shù)教學反思簡短)