下面是范文網(wǎng)小編收集的初中數(shù)學(xué)命題教案3篇(中學(xué)數(shù)學(xué)命題教學(xué)設(shè)計案例),以供參閱。
初中數(shù)學(xué)命題教案1
教學(xué)目標(biāo)
1.使學(xué)生在了解直線概念的基礎(chǔ)上,理解射線和線段的概念,并能理解它們的區(qū)別與聯(lián)系.
2.通過直線、射線、線段概念的教學(xué),培養(yǎng)學(xué)生的幾何想象能力和觀察能力,用運動的觀點看待幾何圖形.
3.培養(yǎng)學(xué)生對幾何圖形的興趣,提高學(xué)習(xí)幾何的積極性.
教學(xué)重點和難點
直線、射線、線段的概念是重點.對直線的“無限延伸”性的理解是難點.
教學(xué)過程設(shè)計
一、聯(lián)系實際,提出問題
1.讓學(xué)生舉出實際生活中所見到的直線的實例(可請5~6位學(xué)生發(fā)言).
2.教師總結(jié):鉛筆、尺子、桌子邊沿等都有長度,是可以度量的,它們都是直線的一部分,此時給出直線的概念“直線是向兩個方向無限延伸著的.”繼而提問“無限延伸”怎樣解釋,教師可形象的歸納出“直線是無頭無尾、要多長有多長.”讓學(xué)生閉起眼睛想象一下.
再提問:在我們以前學(xué)過的知識中有沒有真正是直線的例子?(數(shù)軸)
3.通過前面學(xué)生所舉的例子,給出線段定義“直線上兩個點和它們之間的部分叫做線段.”
4.教師畫出一條直線,并在直線上標(biāo)出一條線段,然后擦掉一部分,只剩下一條射線,先看它與直線、線段的區(qū)別,后給出射線的定義:“直線上的一點和它一旁的部分叫做射線.”
二、正確表示直線、射線和線段
1.直線的表示有兩種:一個小寫字母或兩個大寫字母.但前面必須加“直線”兩字,如:直線l;直線m,直線AB;直線CD.(板書表示出來)
2.線段的表示也有兩種:一個小寫字母或用端點的兩個大寫字母.但前面必須加“線段”兩字.如:線段a;線段AB.(板書表示出來)
3.射線的表示同樣有兩種:一個小寫字母或端點的大寫字母和射線上的一個大寫字母,前面必須加“射線”兩字.如:射線a;射線OA.(板書表示出來)
三、運動變化,找出聯(lián)系
1.讓學(xué)生找出三者之間的區(qū)別:端點的個數(shù),0個,1個,2個.
2.教師通過圖示將線段變化為射線、直線.指出事物之間都不是孤立的,靜止的,而是互相聯(lián)系的,變化的.
(1)先畫出線段AB,然后向一方延長,成為一條射線,再向相反的方向延長,成為一條直線.告訴學(xué)生:線段向一方延長就會成為射線,向兩方延長就會成為直線.因此,直線、射線都可以看作是由線段運動而成的.
(2)再畫出一條直線,在直線上任找一點,擦掉一點一旁的部分,就成為一條射線,在射線上再找一點,兩點之間的部分就成為一條線段.
四、回到實際,鞏固概念
1.讓學(xué)生舉出生活中的直線、射線和線段的.事例.如:手電筒的光線,燈泡發(fā)出的光線等.
2.練習(xí):
(1)如圖1-1,A,B,C,D為直線l上的四個點.
問:圖中共有幾條線段?以C為端點的射線有哪幾條?
(2)如圖1-2,A,B,C為平面上的三個點,分別畫出過點A,B;點A,C;點B,C的三條直線.
(3)如圖1-3,P是直線l外一點,A是直線L上一點.過P,A作一條直線;過A作一條射線.
(4)如圖1-4,圖中共有多少條線段?
五、小結(jié)
1.教師提問:(1)本節(jié)課你掌握了幾個幾何概念?
(2)直線、射線和線段三者之間的關(guān)系是什么?
(3)本節(jié)課應(yīng)該理解哪幾個關(guān)鍵詞?
(4)在表示直線、射線和線段時應(yīng)注意什么?
在學(xué)生回答的基礎(chǔ)上教師給以完善和補充,并進(jìn)一步強調(diào)三者之間的關(guān)系.同時指出這三個概念是平面幾何的基礎(chǔ).
2.再設(shè)問:直線還有什么性質(zhì)呢?為下節(jié)課講直線的性質(zhì)埋下伏筆.
六、作業(yè) p.11,1;p.12,3;p.14,1.2.
板書設(shè)計
課堂教學(xué)設(shè)計說明
1.本課的教學(xué)時間為1課時45分鐘.
2.本設(shè)計對教材順序稍加改動,先將直線、射線和線段的概念給出,然后再講它們的性質(zhì).這樣對于學(xué)生建構(gòu)知識結(jié)構(gòu)較為有利.
3.由于這節(jié)課為幾何的起始課,從感性認(rèn)識出發(fā),在學(xué)生熟悉的實際生活中,抽象出幾何的概念,便于認(rèn)知結(jié)構(gòu)的形成.
4.建議:本課時也可以將課型設(shè)計為“自學(xué)輔導(dǎo)式”,由學(xué)生自己討論直線、射線和線段的概念,并尋找它們之間的區(qū)別與聯(lián)系,這樣更有利于發(fā)揮學(xué)生自己的主觀能動性,參與意識更強,課堂更加活躍.
5.在有條件的地方,對三者關(guān)系的變化過程,應(yīng)用計算機輔助教學(xué)更為生動有趣,“變”的意義更為明顯.
初中數(shù)學(xué)命題教案2
教學(xué)目標(biāo)
?。ㄒ唬┙虒W(xué)知識點
1.命題的組成:條件和結(jié)論。 2。命題的真假 。 3。了解數(shù)學(xué)史。
?。ǘ┠芰τ?xùn)練要求
1.能夠分清命題的題設(shè)和結(jié)論。會把命題改寫成“如果……,那么……”的形式;能 判斷命題的真假。
2.通過舉例判定一個命題是假命題,使學(xué)生學(xué)會反面思考問題的方法。
3.通過對歐幾里得《原本》 的介紹,感受幾何的演繹體系對數(shù)學(xué)發(fā)展和人類文明的價值。
?。ㄈ┣楦信c價值觀要求
1.通過舉反例的方法來 判斷一個命題是假命題,說明任何事物都是正反兩方面的對立統(tǒng)一體。
2.通過了解數(shù)學(xué)知識,拓展學(xué)生的視野,從而激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點
找出命題的條件(題設(shè))和結(jié)論。
教學(xué) 難點
找出命題的條件和結(jié)論。
教學(xué)過程
?、?巧設(shè)現(xiàn)實情境,引入課題
上節(jié)課我們研究了命題,那么什么叫命題呢?
下面大家來 想一想:
觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同的結(jié)構(gòu)特征?
?。?)如果兩個三角形的三條邊對應(yīng)相等,那么這兩個三角形全等。
(2)如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。
?。?)如果一個三角形是 等腰三角形,那 么這個三角形的兩個底角相等。
?。?)如果一個四邊形的對角線相等,那么這個四邊形是矩形。
(5)如果一個四邊形的'兩條對角線互相垂直,那么這個四邊形是菱形。
學(xué)生分組討論。
?、龠@五個命題都是用“如果……,那么……”的 形 式敘述的。
?、诿總€命題都 是由已知得到結(jié)論。
③這五個命題的每個命題都有條件和結(jié)論。
Ⅱ.講授新課
1 .命題的組成:每個命題都有條件和結(jié)論兩部分組成。
條件是已知的事項,結(jié)論是由已知事項推斷 出的事項。
2.舉例說明 命題如何寫成“如果……,那么……”的形式
?、倜黠@的。
?、诓幻黠@的。
做一做
1.下列各命題的條件是什么?結(jié)論是 什么?
?。?)如果兩個角相等,那么它們是對頂角;
?。?)如果a>b,b>c,那么a=c;
(3)兩角和其中一角的對邊對應(yīng) 相等的兩個三角形全等;
(4)菱形的四條邊都 相等;
?。?)全等三角形的面積相等。
2.上述命題中哪 些是正確的?哪些是不正確的?你怎么知道它們是不正確的?
3.真命題和假命題
我們把正確的命題稱為真命題(tru e statement),不正確的命題稱為假命題(false statement)。
思考:如何證實一個命題是真命題呢?
4.我們這套教材有如下命題作為公理:
1.兩直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。
2.兩條平行線被第三條直線所 截,同位角相等。
3.兩邊及其夾角對應(yīng)相等的兩個三角形全等。
4.兩角及其夾邊對應(yīng)相等的兩個三角形全 等。
5.三邊對應(yīng)相等的兩個 三角形全等。
6.全等三角形的對應(yīng)邊相等,對應(yīng)角相等。
?、?課堂練習(xí)
?、?課時小結(jié)
本節(jié)課我們主要研究了命題的組成及真假。知道任何一個命題都是由條件和結(jié)論兩部分組成。命題分為真命題和 假命題。
在辨別真假命題時。注意:假命題只需舉一個反例即可。而真命題除公理和性質(zhì)外,必須通過推理得證。
?、?課后作業(yè)
2.預(yù)習(xí)提綱
?。?)平行線的判定方法的證明
?。?)如何進(jìn)行推理
初中數(shù)學(xué)命題教案3
?。ㄒ唬┙滩姆治?/strong>
1、知識結(jié)構(gòu)
2、重點、難點分析
重點:
找出命題的題設(shè)和結(jié)論.因為找出一個命題的題設(shè)和結(jié)論,是對該命題深刻理解的前提,而對命題理解能力是我們今后研究數(shù)學(xué)必備的能力,也是研究其它學(xué)科能力的基礎(chǔ).
難點:
找出一個命題的題設(shè)和結(jié)論.因為理解和掌握一個命題,一定要分清它的題設(shè)和結(jié)論,所以找出一個命題的題設(shè)和結(jié)論是十分重要的問題.但有些命題的題設(shè)和結(jié)論不明顯.例如,“對頂角相等”,“等角的余角相等”等.一些沒有寫成“如果那么”形式的命題,學(xué)生往往搞不清哪是題設(shè),哪是結(jié)論,又沒有一個通用的方法可以套用,所以分清題設(shè)和結(jié)論是教學(xué)的`一個難點.
?。ǘ┙虒W(xué)建議
1、教師在教學(xué)過程中,組織或引導(dǎo)學(xué)生從具體到抽象,結(jié)合學(xué)生熟悉的事例,來理解命題的概念、找出一個命題的題設(shè)和結(jié)論,并能判斷一些簡單命題的真假.
2、命題是數(shù)學(xué)中一個非常重要的概念,雖然高中階段我們還要學(xué)習(xí),但對于程度好的A層學(xué)生還要理解:
?。?)假命題可分為兩類情況:
?、兕}設(shè)只有一種情形,并且結(jié)論是錯誤的,例如,“1+3=7”就是一個錯誤的命題.
?、陬}設(shè)有多種情形,其中至少有一種情形的結(jié)論是錯誤的.
例如,“內(nèi)錯角互補,兩直線平行”這個命題的題設(shè)可分為兩種情形:
第一種情形是兩個內(nèi)錯角都等于90°,這時兩直線平行;
第二種情形是兩個內(nèi)錯角不都等于90°,這時兩直線不平行.
整體說來,這是錯誤的命題.
?。?)是否是命題:
命題的定義包括兩層涵義:
?、倜}必須是一個完整的句子;
②這個句子必須對某件事情做出肯定或者否定的判斷.即命題是判斷某一件事情的句子.在語法上,這樣的句子叫做陳述句,它由“題設(shè)+結(jié)論”構(gòu)成.
另外也有一些句子不是陳述句,例如,祈使句(也叫做命令句)“過直線AB外一點作該直線的平行線.”疑問句“∠A是否等于∠B?”感嘆句“竟然得到5>9的結(jié)果!”以上三個句子都不是命題.
?。?)命題的組成
每個命題都是由題設(shè)、結(jié)論兩部分組成.題設(shè)是已知事項;結(jié)論是由已知事項推出的事項.命題常寫成“如果,那么”的形式.具有這種形式的命題中,用“如果”開始的部分是題設(shè),用“那么”開始的部分是結(jié)論.
有些命題,沒有寫成“如果,那么”的形式,題設(shè)和結(jié)論不明顯.對于這樣的命題,要經(jīng)過分折才能找出題設(shè)和結(jié)論,也可以將它們改寫成“如果那么”的形式.
另外命題的題設(shè)(條件)部分,有時也可用“已知”或者“若”等形式表述;命題的結(jié)論部分,有時也可用“求證”或“則”等形式表述.
初中數(shù)學(xué)命題教案3篇(中學(xué)數(shù)學(xué)命題教學(xué)設(shè)計案例)相關(guān)文章:
★ 大班數(shù)學(xué)教案經(jīng)典5篇(大班數(shù)學(xué)教案優(yōu)秀)
★ 初中數(shù)學(xué)檢討書12篇(針對數(shù)學(xué)課寫檢討書初中)
★ 大班優(yōu)秀數(shù)學(xué)教案4篇(找鄰居大班數(shù)學(xué)教案)
★ 關(guān)于大班優(yōu)秀數(shù)學(xué)教案5篇(大班數(shù)學(xué)活動優(yōu)質(zhì)教案)
★ 大班優(yōu)秀數(shù)學(xué)教案3篇(找鄰居大班數(shù)學(xué)教案)
★ 初中數(shù)學(xué)矩形教案4篇(人教版初中矩形數(shù)學(xué)說課稿)
★ 大班數(shù)學(xué)教案范文7篇(大班數(shù)學(xué)教案40反思)
★ 小班數(shù)學(xué)教案范文7篇 小班數(shù)學(xué)教學(xué)教案
★ 幼兒園中班數(shù)學(xué)教案優(yōu)秀3篇
★ 初中數(shù)學(xué)教學(xué)反思8篇 一元一次方程數(shù)學(xué)教學(xué)反思