亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

絕對值數(shù)學教案4篇(5.3絕對值教案)

時間:2024-01-07 14:16:00 教案

  下面是范文網(wǎng)小編收集的絕對值數(shù)學教案4篇(5.3絕對值教案),供大家賞析。

絕對值數(shù)學教案4篇(5.3絕對值教案)

絕對值數(shù)學教案1

  一、學習與導學目標:

  知識與技能:會求出一個數(shù)的絕對值,能利用數(shù)軸及絕對值的知識,比較兩個有理數(shù)的大小;

  過程與方法:經(jīng)歷絕對值概念的形成,初步體會數(shù)形結(jié)合的思想方法,豐富解決問題的策略;

  情感態(tài)度:通過創(chuàng)設情境,初步感悟?qū)W習絕對值的必要性,促進責任心的形成。

  二、學程與導程活動:

  A、創(chuàng)設情境(幻燈片或掛圖)

  1、兩輛汽車,其一向東行駛10km,另一向西行駛8km。為了區(qū)別,可規(guī)定向東行駛為正,則分別記作+10km和-8km。但在計算出租車收費,汽車行駛所耗的汽油,起主要作用的是汽車行駛的路程,而不是行駛的方向。此時,行駛路程則分別記作10km和8km。

  再如測量誤差問題、排球重量誰更接近標準問題

  2、在討論數(shù)軸上的點與原點的距離時,只需要觀察它與原點相隔多少個單位長度,與位于原點何方無關。

  B、學習概念:

  1、我們把在數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolute value),記作︱a︱(幻燈片)。因此,上述+10,-8的絕對值分別是10,8。

  如在數(shù)軸上表示數(shù)-6的點和表示數(shù)6的點與原點的距離都是6,所以,-6和6的絕對值都是6,記作︱-6︱=6,︱6︱=6。(互為相反數(shù)的兩個數(shù)的絕對值相同)

  2、嘗試回答(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;

  (2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;

  (3)︱0︱= 。(幻燈片)

  思考:你能從中發(fā)現(xiàn)什么規(guī)律?引導學生得出:(幻燈片)

  性質(zhì):一個正數(shù)的絕對值是它本身;

  一個負數(shù)的絕對值是它的`相反數(shù);

  零的絕對值是零。

  如果用字母a表示有理數(shù),上述性質(zhì)可表述為:

  當a是正數(shù)時,︱a︱=a;

  當a是負數(shù)時,︱a︱=-a;

  當a=0時,︱a︱=0。

  解答課本P19/7及P15練習,由P19/7體會絕對值在實際中的應用,由練習1體會上面的三個等式,由練習2中提到的絕對值大小、數(shù)軸,引出問題:

  在引入負數(shù)以后,如何比較兩個數(shù)的大小,尤其是兩個負數(shù)的大小?

  3、讓我們?nèi)匀换氐綄嶋H中去看看有怎樣的啟發(fā),引導閱讀P16(幻燈片)。

  顯然,結(jié)合問題的實際意義不難得到:-4-202。

  因此,在數(shù)軸上你有何發(fā)現(xiàn)?生討論后發(fā)現(xiàn):從左往右表示的數(shù)越來越大。

  再找?guī)讉€量試試是否如此?這些數(shù)的絕對值的大小如何?(可利用P19/6,8為素材)

  通過以上探究活動得到:正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù);

  兩個負數(shù),絕對值大的反而小。

  4、師生活動比較下列各對數(shù)的大?。篜17例,P18練習。

  5、師生小結(jié)歸納(幻燈片)

  三、筆記與板書提綱:

  1、 幻燈片

  2、 師生板演練習P15/1

  四、練習與拓展選題:

  P19/4,5,9,10

絕對值數(shù)學教案2

  教學目標

  1.了解絕對值的概念,會求有理數(shù)的絕對值;

  2.會利用絕對值比較兩個負數(shù)的大小;

  3.在絕對值概念形成過程中,滲透數(shù)形結(jié)合等思想方法,并注意培養(yǎng)學生的思維能力.教學建議

  一、重點、難點分析

  絕對值概念既是本節(jié)的教學重點又是教學難點。關于絕對值的概念,需要明確的是無論是絕對值的幾何定義,還是絕對值的代數(shù)定義,都揭示了絕對值的一個重要性質(zhì)——非負性,也就是說,任何一個有理數(shù)的絕對值都是非負數(shù),即無論a取任意有理數(shù),都有 。

  教材上絕對值的定義是從幾何角度給出的,也就是從數(shù)軸上表示數(shù)的點在數(shù)軸上的位置出發(fā),得到的定義。這樣,數(shù)軸的'概念、畫法、利用數(shù)軸比較有理數(shù)的大小、相反數(shù),以及絕對值,通過數(shù)軸,這些知識都聯(lián)系在一起了。此外,0的絕對值是0,從幾何定義出發(fā),就十分容易理解了。

  二、知識結(jié)構

  絕對值的定義 絕對值的表示方法 用絕對值比較有理數(shù)的大小

  三、教法建議

  用語言敘述絕對值的定義,用解析式的形式給出絕對值的定義,或利用數(shù)軸定義絕對值,從理論上講都是可以的.初學絕對值用語言敘述的定義,好像更便于學生記憶和運用,以后逐步改用解析式表示絕對值的定義,即

  在教學中,只能突出一種定義,否則容易引起混亂.可以把利用數(shù)軸給出的定義作為絕對值的一種直觀解釋.

  此外,要反復提醒學生:一個有理數(shù)的絕對值不能是負數(shù),但不能說一定是正數(shù).“非負數(shù)”的概念視學生的情況,逐步滲透,逐步提出.

  四、有關絕對值的一些內(nèi)容

  1.絕對值的代數(shù)定義

  一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);零的絕對值是零.

  2.絕對值的幾何定義

  在數(shù)軸上表示一個數(shù)的點離開原點的距離,叫做這個數(shù)的絕對值.

  3.絕對值的主要性質(zhì)

  (2)一個實數(shù)的絕對值是一個非負數(shù),即|a|≥0,因此,在實數(shù)范圍內(nèi),絕對值最小的數(shù)是零.

  (4)兩個相反數(shù)的絕對值相等.

  五、運用絕對值比較有理數(shù)的大小

  1.兩個負數(shù)大小的比較,因為兩個負數(shù)在數(shù)軸上的位置關系是:絕對值較大的負數(shù)一定在絕對值較小的負數(shù)左邊,所以,兩個負數(shù),絕對值大的反而小.

  比較兩個負數(shù)的方法步驟是:

 ?。?)先分別求出兩個負數(shù)的絕對值;

 ?。?)比較這兩個絕對值的大小;

  (3)根據(jù)“兩個負數(shù),絕對值大的反而小”作出正確的判斷.

絕對值數(shù)學教案3

  教學目標

  1.知識與技能

  ①能根據(jù)一個數(shù)的絕對值表示距離,初步理解絕對值的概念,能求一個數(shù)的絕對值.

 ?、谕ㄟ^應用絕對值解決實際問題,體會絕對值的意義和作用.

  2.過程與方法

  經(jīng)歷絕對值的代數(shù)定義轉(zhuǎn)化成數(shù)學式子的過程中,培養(yǎng)學生運用數(shù)學轉(zhuǎn)化思想指導思維活動的能力.

  3.情感、態(tài)度與價值觀

  ①通過解釋絕對值的幾何意義,滲透數(shù)形結(jié)合的思想.

  ②體驗運用直觀知識解決數(shù)學問題的成功.

  教學重點難點

  重點:給出一個數(shù),會求它的絕對值.

  難點:絕對值的幾何意義、代數(shù)定義的.導出.

  教與學互動設計

  (一)創(chuàng)設情境,導入新課

  活動 請兩同學到講臺前,分別向左、向右行3米.

  交流 ①他們所走的路線相同嗎?

  ②若向右為正,分別可怎樣表示他們的位置? ③他們所走的路程的遠近是多少?

  (二)合作交流,解讀探究

  觀察 出示一組數(shù)6與-6,3.5與-3.5,1和-1,它們是一對互為________,它們的__________不同,__________相同.

  總結(jié): 例如6和-6兩個數(shù)在數(shù)軸上的兩點雖然分布在原點的兩邊,但它們到原點的距離相等,如果我們不考慮兩點在原點的哪一邊,只考慮它們離開原點的距離,這個距離都是6,我們就把這個距離叫做6和-6的絕對值.

  絕對值:在數(shù)軸上表示數(shù)a的點與原點的距離叫做a的絕對值,記作│a│.

  想一想 -3的絕對值是什么?

絕對值數(shù)學教案4

  一、教學目標:

  1.知識目標:

 ?、倌軠蚀_理解絕對值的幾何意義和代數(shù)意義。

 ?、谀軠蚀_熟練地求一個有理數(shù)的絕對值。

  ③使學生知道絕對值是一個非負數(shù),能更深刻地理解相反數(shù)的概念。

  2.能力目標:

 ?、俪醪脚囵B(yǎng)學生觀察、分析、歸納和概括的思維能力。

 ?、诔醪脚囵B(yǎng)學生由抽象到具體再到抽象的思維能力。

  3.情感目標:

 ?、偻ㄟ^向?qū)W生滲透數(shù)形結(jié)合思想和分類討論的思想,讓學生領略到數(shù)學的奧妙,從而激起他們的好奇心和求知欲望。

 ?、谕ㄟ^課堂上生動、活潑和愉快、輕松地學習,使學生感受到學習數(shù)學的快樂,從而增強他們的自信心。

  二、教學重點和難點

  教學重點:絕對值的幾何意義和代數(shù)意義,以及求一個數(shù)的絕對值。

  教學難點:絕對值定義的得出、意義的理解及求一個負數(shù)的絕對值。

  三、教學方法

  啟發(fā)引導式、討論式和談話法

  四、教學過程

  (一)復習提問

  問題:相反數(shù)6與-6在數(shù)軸上與原點的'距離各是多少?兩個相反數(shù)在數(shù)軸上的點有什么特征?

 ?。ǘ┬率?/p>

  1.引入

  結(jié)合教材P63圖2-11和復習問題,講解6與-6的絕對值的意義。

  2.數(shù)a的絕對值的意義

 ?、賻缀我饬x

  一個數(shù)a的絕對值就是數(shù)軸上表示數(shù)a的點到原點的距離。數(shù)a的絕對值記作|a|.

  舉例說明數(shù)a的絕對值的幾何意義。(按教材P63的倒數(shù)第二段進行講解。)

  強調(diào):表示0的點與原點的距離是0,所以|0|=0.

  指出:表示“距離”的數(shù)是非負數(shù),所以絕對值是一個非負數(shù)。

  ②代數(shù)意義

  把有理數(shù)分成正數(shù)、零、負數(shù),根據(jù)絕對值的幾何意義可以得出絕對值的代數(shù)意義:一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),0的絕對值是0.

  用字母a表示數(shù),則絕對值的代數(shù)意義可以表示為:

  指出:絕對值的代數(shù)定義可以作為求一個數(shù)的絕對值的方法。

  3.例題精講

  例1.求8,-8,,-的絕對值。

  按教材方法講解。

  例2.計算:|2.5|+|-3|-|-3|.

  解:|2.5|+|-3|-|-3|=2.5+3-3=6-3=3

  例3.已知一個數(shù)的絕對值等于2,求這個數(shù)。

  解:∵|2|=2,|-2|=2

  ∴這個數(shù)是2或-2.

  五、鞏固練習

  練習一:教材P641、2,P66習題2.4A組1、2.

  練習二:

  1.絕對值小于4的整數(shù)是____.

  2.絕對值最小的數(shù)是____.

  3.已知|2x-1|+|y-2|=0,求代數(shù)式3x2y的值。

  六、歸納小結(jié)

  本節(jié)課從幾何與代數(shù)兩個方面說明了絕對值的意義,由絕對值的意義可知,任何數(shù)的絕對值都是非負數(shù)。絕對值的代數(shù)意義可以作為求一個數(shù)的絕對值的方法。

  七、布置作業(yè)

  教材P66習題2.4A組3、4、5.

絕對值數(shù)學教案4篇(5.3絕對值教案)相關文章:

七年級數(shù)學上冊《絕對值》教案3篇(人教版七年級數(shù)學絕對值教案)

絕對值教學反思8篇 絕對值第二課時的教學反思

絕對值說課稿3篇

初中生的絕對值教案例3篇(初中絕對值教學)

絕對值教案

七年級數(shù)學上冊絕對值練習題2篇 初中七年級數(shù)學絕對值題