亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

高一數(shù)學(xué)下冊(cè)教案11篇 高一數(shù)學(xué)下冊(cè)課程

時(shí)間:2023-09-25 13:37:00 教案

  下面是范文網(wǎng)小編收集的高一數(shù)學(xué)下冊(cè)教案11篇 高一數(shù)學(xué)下冊(cè)課程,供大家閱讀。

高一數(shù)學(xué)下冊(cè)教案11篇 高一數(shù)學(xué)下冊(cè)課程

高一數(shù)學(xué)下冊(cè)教案1

  一、教學(xué)目標(biāo):

  掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

  二、教學(xué)重點(diǎn):

  向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。

  三、教學(xué)過程:

  (一)主要知識(shí):

  1、掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

  (二)例題分析:略

  四、小結(jié):

  1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的.知識(shí)解決有關(guān)應(yīng)用問題,

  2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。

高一數(shù)學(xué)下冊(cè)教案2

  一、教學(xué)過程

  1.復(fù)習(xí)

  反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。

  求出函數(shù)y=x3的反函數(shù)。

  2.新課

  先讓學(xué)生用幾何畫板畫出y=x3的圖象,學(xué)生紛紛動(dòng)手,很快畫出了函數(shù)的圖象。有部分學(xué)生發(fā)出了“咦”的一聲,因?yàn)樗麄兊玫搅巳缦碌膱D象:

  教師在畫出上述圖象的學(xué)生中選定生1,將他的屏幕內(nèi)容通過教學(xué)系統(tǒng)放到其他同學(xué)的屏幕上,很快有學(xué)生作出反應(yīng)。

  生2:這是y=x3的反函數(shù)y=的圖象。

  師:對(duì),但是怎么會(huì)得到這個(gè)圖象,請(qǐng)大家討論。

  (學(xué)生展開討論,但找不出原因。)

  師:我們請(qǐng)生1再給大家演示一下,大家?guī)退艺以颉?/p>

  (生1將他的制作過程重新重復(fù)了一次。)

  生3:?jiǎn)栴}出在他選擇的次序不對(duì)。

  師:哪個(gè)次序?

  生3:作點(diǎn)B前,選擇xA和xA3為B的坐標(biāo)時(shí),他先選擇xA3,后選擇xA,作出來的點(diǎn)的坐標(biāo)為(xA3,xA),而不是(xA,xA3)。

  師:是這樣嗎?我們請(qǐng)生1再做一次。

  (這次生1在做的過程當(dāng)中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)

  師:看來問題確實(shí)是出在這個(gè)地方,那么請(qǐng)同學(xué)再想想,為什么他采用了錯(cuò)誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?

  (學(xué)生再次陷入思考,一會(huì)兒有學(xué)生舉手。)

  師:我們請(qǐng)生4來告訴大家。

  生4:因?yàn)樗@樣做,正好是將y=x3上的點(diǎn)B(x,y)的橫坐標(biāo)x與縱坐標(biāo)y交換,而y=x3的反函數(shù)也正好是將x與y交換。

  師:完全正確。下面我們進(jìn)一步研究y=x3的圖象及其反函數(shù)y=的圖象的關(guān)系,同學(xué)們能不能看出這兩個(gè)函數(shù)的圖象有什么樣的關(guān)系?

  (多數(shù)學(xué)生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進(jìn)一步追問。)

  師:怎么由y=x3的圖象得到y(tǒng)=的圖象?

  生5:將y=x3的圖象上點(diǎn)的橫坐標(biāo)與縱坐標(biāo)交換,可得到y(tǒng)=的圖象。

  師:將橫坐標(biāo)與縱坐標(biāo)互換?怎么換?

  (學(xué)生一時(shí)未能明白教師的`意思,場(chǎng)面一下子冷了下來,教師不得不將問題進(jìn)一步明確。)

  師:我其實(shí)是想問大家這兩個(gè)函數(shù)的圖象有沒有對(duì)稱關(guān)系,有的話,是什么樣的對(duì)稱關(guān)系?

  (學(xué)生重新開始觀察這兩個(gè)函數(shù)的圖象,一會(huì)兒有學(xué)生舉手。)

  生6:我發(fā)現(xiàn)這兩個(gè)圖象應(yīng)是關(guān)于某條直線對(duì)稱。

  師:能說說是關(guān)于哪條直線對(duì)稱嗎?

  生6:我還沒找出來。

  (接下來,教師引導(dǎo)學(xué)生利用幾何畫板找出兩函數(shù)圖象的對(duì)稱軸,畫出如下圖形,如圖2所示:)

  學(xué)生通過移動(dòng)點(diǎn)A(點(diǎn)B、C隨之移動(dòng))后發(fā)現(xiàn),BC的中點(diǎn)M在同一條直線上,這條直線就是兩函數(shù)圖象的對(duì)稱軸,在追蹤M點(diǎn)后,發(fā)現(xiàn)中點(diǎn)的軌跡是直線y=x。

  生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對(duì)稱。

  師:這個(gè)結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對(duì)稱關(guān)系嗎?請(qǐng)同學(xué)們用其他函數(shù)來試一試。

  (學(xué)生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進(jìn)行驗(yàn)證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對(duì)稱。)

  教師巡視全班時(shí)已經(jīng)發(fā)現(xiàn)這個(gè)問題,將這個(gè)圖象傳給全班學(xué)生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),②也不是函數(shù)的圖象。

  最后教師與學(xué)生一起總結(jié):

  點(diǎn)(x,y)與點(diǎn)(y,x)關(guān)于直線y=x對(duì)稱;

  函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對(duì)稱。

  二、反思與點(diǎn)評(píng)

  1.在開學(xué)初,我就教學(xué)幾何畫板4。0的用法,在教函數(shù)圖象畫法的過程當(dāng)中,發(fā)現(xiàn)學(xué)生根據(jù)選定坐標(biāo)作點(diǎn)時(shí),不太注意選擇橫坐標(biāo)與縱坐標(biāo)的順序,本課設(shè)計(jì)起源于此。雖然幾何畫板4。04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對(duì)稱的本質(zhì),所以本節(jié)課教學(xué)中,我有意選擇了幾何畫板4。0進(jìn)行教學(xué)。

  2.荷蘭數(shù)學(xué)教育家弗賴登塔爾認(rèn)為,數(shù)學(xué)學(xué)習(xí)過程當(dāng)中,可借助于生動(dòng)直觀的形象來引導(dǎo)人們的思想過程,但常常由于圖形或想象的錯(cuò)誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會(huì)影響學(xué)生正確理解比較抽象的概念。

  計(jì)算機(jī)作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強(qiáng)的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計(jì)算機(jī)都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計(jì)算機(jī),但不能達(dá)到更好地理解抽象概念,促進(jìn)學(xué)生思維的目的的話,這樣的教學(xué)中,計(jì)算機(jī)最多只是一種普通的直觀工具而已。

  在本節(jié)課的教學(xué)中,計(jì)算機(jī)更多的是作為學(xué)生探索發(fā)現(xiàn)的工具,學(xué)生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對(duì)稱關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對(duì)反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。

  當(dāng)前計(jì)算機(jī)用于中學(xué)數(shù)學(xué)的主要形式還是以輔助為主,更多的是把計(jì)算機(jī)作為一種直觀工具,有時(shí)甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計(jì)算機(jī)作為學(xué)生的認(rèn)知工具,讓學(xué)生通過計(jì)算機(jī)發(fā)現(xiàn)探索,甚至利用計(jì)算機(jī)來做數(shù)學(xué),在此過程當(dāng)中更好地理解數(shù)學(xué)概念,促進(jìn)數(shù)學(xué)思維,發(fā)展數(shù)學(xué)創(chuàng)新能力。

  3.在引出兩個(gè)函數(shù)圖象對(duì)稱關(guān)系的時(shí)候,問題設(shè)計(jì)不甚妥當(dāng),本來是想要學(xué)生回答兩個(gè)函數(shù)圖象對(duì)稱的關(guān)系,但學(xué)生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學(xué)生引入歧途。這樣的問題在今后的教學(xué)中是必須力求避免的。

高一數(shù)學(xué)下冊(cè)教案3

  垂直的性質(zhì)

  課型:新授課

  一、教學(xué)目標(biāo)

  1、知識(shí)與技能

 ?。?)使學(xué)生掌握直線與平面垂直,平面與平面垂直的性質(zhì)定理;

  (2)能運(yùn)用性質(zhì)定理解決一些簡(jiǎn)單問題;

 ?。?)了解直線與平面、平面與平面垂直的判定定理和性質(zhì)定理間的相互聯(lián)系。

  2、過程與方法

  (1)讓學(xué)生在觀察物體模型的基礎(chǔ)上,進(jìn)行操作確認(rèn),獲得對(duì)性質(zhì)定理正確性的認(rèn)識(shí);

  (2)性質(zhì)定理的推理論證。

  3、情態(tài)與價(jià)值

  通過“直觀感知、操作確認(rèn),推理證明”,培養(yǎng)學(xué)生空間概念、空間想象能力以及邏輯推理能力。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  兩個(gè)性質(zhì)定理的證明。

  三、學(xué)法與用具

  (1)學(xué)法:直觀感知、操作確認(rèn),猜想與證明。

 ?。?)用具:長(zhǎng)方體模型。

  四、教學(xué)設(shè)計(jì)

 ?。ㄒ唬?、復(fù)習(xí)準(zhǔn)備:

  1.直線、平面垂直的`判定,二面角的定義、大小及求法.

  2.練習(xí):對(duì)于直線和平面,能得出的一個(gè)條件是()①②③④.

  3.引入:星級(jí)酒店門口立著三根旗桿,這三根旗桿均與地面垂直,這三根旗桿所在的直線之間具有什么位置關(guān)系?

 ?。ǘ?、講授新課:

  1.教學(xué)直線與平面垂直的性質(zhì)定理:

  ①定理:垂直于同一個(gè)平面的兩條直線平行.(線面垂直線線平行)

 ?、诰毩?xí):表示直線,表示平面,則的充分條件是()A、B、 C、 D、所在的角相等

  例1:設(shè)直線分別在正方體中兩個(gè)不同的平面內(nèi),欲使,應(yīng)滿足什么條件?(分組討論師生共析總結(jié)歸納)

 ?。ㄅ卸▋蓷l直線平行的方法有很多:平行公理、同位角相等、內(nèi)錯(cuò)角相等、同旁內(nèi)角互補(bǔ)、中位線定理、平行四邊形等等)

  2.教學(xué)平面與平面垂直的性質(zhì)定理:

 ?、俣ɡ恚簝蓚€(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直.(面面垂直線面垂直)

  探究:兩個(gè)平面垂直,過其中一個(gè)平面內(nèi)一點(diǎn)作另一個(gè)平面的垂線有且僅有一條.

 ?、诰毩?xí):兩個(gè)平面互相垂直,下列命題正確的是()

  A、一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面內(nèi)的任意一條直線

  B、一個(gè)平面內(nèi)的已知直線必垂直于另一個(gè)平面內(nèi)的無數(shù)條直線

  C、一個(gè)平面內(nèi)的任意一條直線必垂直于另一個(gè)平面

  D、過一個(gè)平面內(nèi)任意點(diǎn)作交線的垂線,則此垂線必垂直于另一個(gè)平面.

  例2、如圖,已知平面,直線滿足,試判斷直線與平面的位置關(guān)系.

  ④練習(xí):如圖,已知平面平面,平面平面,,求證:

  (三)、鞏固練習(xí):

  1、下列命題中,正確的是()

  A、過平面外一點(diǎn),可作無數(shù)條直線和這個(gè)平面垂直B、過一點(diǎn)有且僅有一個(gè)平面和一條定直線垂直C、若異面,過一定可作一個(gè)平面與垂直D、異面,過不在上的點(diǎn),一定可以作一個(gè)平面和都垂直.

  2、如圖,是所在平面外一點(diǎn),的中點(diǎn),上的點(diǎn),求證:

  3、教材P71、72頁

 ?。ㄋ模╈柟躺罨?、發(fā)展思維

  思考1、設(shè)平面α⊥平面β,點(diǎn)P在平面α內(nèi),過點(diǎn)P作平面β的垂線a,直線a與平面α具有什么位置關(guān)系?

 ?。ù穑褐本€a必在平面α內(nèi))

  思考2、已知平面α、β和直線a,若α⊥β,a⊥β,a α,則直線a與平面α具有什么位置關(guān)系?

  五、歸納小結(jié),課后鞏固

  小結(jié):(1)請(qǐng)歸納一下本節(jié)學(xué)習(xí)了什么性質(zhì)定理,其內(nèi)容各是什么?

 ?。?)類比兩個(gè)性質(zhì)定理,你發(fā)現(xiàn)它們之間有何聯(lián)系?

  六、作業(yè):(1)求證:兩條異面直線不能同時(shí)和一個(gè)平面垂直;

  (2)求證:三個(gè)兩兩垂直的平面的交線兩兩垂直。

  課后記:

高一數(shù)學(xué)下冊(cè)教案4

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。

  2.過程與方法:通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。

  3.情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會(huì)三視圖的作用。

  二、教學(xué)重點(diǎn):畫出簡(jiǎn)單幾何體、簡(jiǎn)單組合體的三視圖;

  難點(diǎn):識(shí)別三視圖所表示的空間幾何體。

  三、學(xué)法指導(dǎo):觀察、動(dòng)手實(shí)踐、討論、類比。

  四、教學(xué)過程

  (一)創(chuàng)設(shè)情景,揭開課題

  展示廬山的.風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。

  (二)講授新課

  1、中心投影與平行投影:

  中心投影:光由一點(diǎn)向外散射形成的投影;

  平行投影:在一束平行光線照射下形成的投影。

  正投影:在平行投影中,投影線正對(duì)著投影面。

  2、三視圖:

  正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;

  側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;

  俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

  三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。

  三視圖的畫法規(guī)則:長(zhǎng)對(duì)正,高平齊,寬相等。

  長(zhǎng)對(duì)正:正視圖與俯視圖的長(zhǎng)相等,且相互對(duì)正;

  高平齊:正視圖與側(cè)視圖的高度相等,且相互對(duì)齊;

  寬相等:俯視圖與側(cè)視圖的寬度相等。

  3、畫長(zhǎng)方體的三視圖:

  正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。

  長(zhǎng)方體的三視圖都是長(zhǎng)方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長(zhǎng)相等。

  4、畫圓柱、圓錐的三視圖:

  5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。

  (三)鞏固練習(xí)

  課本P15練習(xí)1、2;P20習(xí)題1.2[A組]2。

  (四)歸納整理

  請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

  (五)布置作業(yè)

  課本P20習(xí)題1.2[A組]1。

高一數(shù)學(xué)下冊(cè)教案5

  課型:新授課

  教學(xué)目標(biāo):

  知識(shí)與技能

  1.正確理解直線的傾斜角和斜率的概念.

  2.理解直線的傾斜角的唯一性.

  3.理解直線的斜率的存在性.

  4.斜率公式的推導(dǎo)過程,掌握過兩點(diǎn)的直線的斜率公式.

  情感態(tài)度與價(jià)值觀

  1.通過直線的傾斜角概念的引入學(xué)習(xí)和直線傾斜角與斜率關(guān)系的揭示,培養(yǎng)學(xué)生觀察、探索能力,運(yùn)用數(shù)學(xué)語言表達(dá)能力,數(shù)學(xué)交流與評(píng)價(jià)能力.

  2.通過斜率概念的建立和斜率公式的推導(dǎo),幫助學(xué)生進(jìn)一步理解數(shù)形結(jié)合思想,培養(yǎng)學(xué)生樹立辯證統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生形成嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和求簡(jiǎn)的數(shù)學(xué)精神.

  重點(diǎn)與難點(diǎn):直線的傾斜角、斜率的概念和公式.

  教學(xué)方法:?jiǎn)l(fā)、引導(dǎo)、討論.

  教學(xué)過程:

  1.直線的傾斜角的概念

  我們知道,經(jīng)過兩點(diǎn)有且只有(確定)一條直線.那么,經(jīng)過一點(diǎn)P的直線l的位置能確定嗎?如圖,過一點(diǎn)P可以作無數(shù)多條直線a,b,c, …易見,答案是否定的這些直線有什么聯(lián)系呢?

  (1)它們都經(jīng)過點(diǎn)P. (2)它們的‘傾斜程度’不同.怎樣描述這種‘傾斜程度’的不同?

  引入直線的傾斜角的概念:

  當(dāng)直線l與x軸相交時(shí),取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí),規(guī)定α= 0°.

  問:傾斜角α的取值范圍是什么? 0°≤α<180°.

  當(dāng)直線l與x軸垂直時(shí), α= 90°.因?yàn)槠矫嬷苯亲鴺?biāo)系內(nèi)的每一條直線都有確定的傾斜程度,引入直線的傾斜角之后,我們就可以用傾斜角α來表示平面直角坐標(biāo)系內(nèi)的每一條直線的傾斜程度.

  直線a∥b∥c,那么它們的傾斜角α相等嗎?答案是肯定的所以一個(gè)傾斜角α不能確定一條直線.

  確定平面直角坐標(biāo)系內(nèi)的一條直線位置的幾何要素:一個(gè)點(diǎn)P和一個(gè)傾斜角α.

  2.直線的斜率:

  一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是

  k = tanα

  ⑴當(dāng)直線l與x軸平行或重合時(shí), α=0°, k = tan0°=0;

  ⑵當(dāng)直線l與x軸垂直時(shí), α= 90°, k不存在.

  由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在.

  例如, α=45°時(shí), k = tan45°= 1;

  α=135°時(shí), k = tan135°= tan(180°-45°) = - tan45°= - 1.

  學(xué)習(xí)了斜率之后,我們又可以用斜率來表示直線的傾斜程度.

  3.直線的斜率公式:

  給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1≠x2,如何用兩點(diǎn)的坐標(biāo)來表示直線P1P2的斜率?

  可用計(jì)算機(jī)作動(dòng)畫演示:直線P1P2的四種情況,并引導(dǎo)學(xué)生如何作輔助線,共同完成斜率公式的推導(dǎo).(略)斜率公式:

  對(duì)于上面的斜率公式要注意下面四點(diǎn):

  (1)當(dāng)x1=x2時(shí),公式右邊無意義,直線的斜率不存在,傾斜角α= 90,直線與x軸垂直;

  (2)k與P1、P2的順序無關(guān),即y1,y2和x1,x2在公式中的.前后次序可以同時(shí)交換,但分子與分母不能交換;

  (3)斜率k可以不通過傾斜角而直接由直線上兩點(diǎn)的坐標(biāo)求得;

  (4)當(dāng)y1=y2時(shí),斜率k = 0,直線的傾斜角α=0°,直線與x軸平行或重合.

  (5)求直線的傾斜角可以由直線上兩點(diǎn)的坐標(biāo)先求斜率而得到.

  4.例題:

  例1已知A(3, 2), B(-4, 1), C(0, -1),求直線AB, BC, CA的斜率,并判斷它們的傾斜角是鈍角還是銳角.

  略解:直線AB的斜率k1=1/7>0,所以它的傾斜角α是銳角;

  直線BC的斜率k2=-0.5<0,所以它的傾斜角α是鈍角;

  直線CA的斜率k3=1>0,所以它的傾斜角α是銳角.

  例2在平面直角坐標(biāo)系中,畫出經(jīng)過原點(diǎn)且斜率分別為1, -1, 2,及-3的直線a, b, c, l.

  分析:要畫出經(jīng)過原點(diǎn)的直線a,只要再找出a上的另外一點(diǎn)M.而M的坐標(biāo)可以根據(jù)直線a的斜率確定;或者k=tanα=1是特殊值,所以也可以以原點(diǎn)為角的頂點(diǎn),x軸的正半軸為角的一邊,在x軸的上方作

  45°的角,再把所作的這一邊反向延長(zhǎng)成直線即可.

  略解:設(shè)直線a上的另外一點(diǎn)M的坐標(biāo)為(x,y),根據(jù)斜率公式有

  1=(y-0)/(x-0),所以x = y

  可令x = 1,則y = 1,于是點(diǎn)M的坐標(biāo)為(1,1).此時(shí)過原點(diǎn)和點(diǎn)M(1,1),可作直線a.同理,可作直線b, c, l.(用計(jì)算機(jī)作動(dòng)畫演示畫直線過程)

  5.練習(xí):P86 1. 2. 3. 4.

  課堂小結(jié):

  (1)直線的傾斜角和斜率的概念.

  (2)直線的斜率公式.

  課后作業(yè): P89習(xí)題3.1 1. 2. 3.4

  課后記:

高一數(shù)學(xué)下冊(cè)教案6

  課型:新授課

  教學(xué)目標(biāo):理解并掌握兩條直線平行與垂直的條件,會(huì)運(yùn)用條件判定兩直線是否平行或垂直.

  教學(xué)重點(diǎn):兩條直線平行和垂直的條件是重點(diǎn),要求學(xué)生能熟練掌握,并靈活運(yùn)用.

  教學(xué)難點(diǎn):?jiǎn)l(fā)學(xué)生,把研究?jī)蓷l直線的平行或垂直問題,轉(zhuǎn)化為研究?jī)蓷l直線的斜率的關(guān)系問題.

  注意:對(duì)于兩條直線中有一條直線斜率不存在的情況,在課堂上老師應(yīng)提醒學(xué)生注意解決好這個(gè)問題.

  教學(xué)過程:

  (一)先研究特殊情況下的兩條直線平行與垂直

  上一節(jié)課,我們已經(jīng)學(xué)習(xí)了直線的傾斜角和斜率的概念,而且知道,可以用傾斜角和斜率來表示直線相對(duì)于x軸的傾斜程度,并推導(dǎo)出了斜率的坐標(biāo)計(jì)算公式.現(xiàn)在,我們來研究能否通過兩條直線的斜率來判斷兩條直線的平行或垂直.

  討論:兩條直線中有一條直線沒有斜率,(1)當(dāng)另一條直線的斜率也不存在時(shí),兩直線的傾斜角都為90°,它們互相平行;(2)當(dāng)另一條直線的斜率為0時(shí),一條直線的傾斜角為90°,另一條直線的傾斜角為0°,兩直線互相垂直.

  (二)兩條直線的斜率都存在時(shí),兩直線的平行與垂直

  設(shè)直線L1和L2的斜率分別為k1和k2.我們知道,兩條直線的平行或垂直是由兩條直線的方向決定的,而兩條直線的方向又是由直線的傾斜角或斜率決定的所以我們下面要研究的問題是:兩條互相平行或垂直的直線,它們的斜率有什么關(guān)系?

  首先研究?jī)蓷l直線互相平行(不重合)的情形.如果L1∥L2(圖1-29),那么它們的傾斜角相等:α1=α2.(借助計(jì)算機(jī),讓學(xué)生通過度量,感知α1,α2的關(guān)系)

  ∴tgα1=tgα2.

  即k1=k2.

  反過來,如果兩條直線的斜率相等:即k1=k2,那么tgα1=tgα2.

  由于0°≤α1<180°,0°≤α<180°,

  ∴α1=α2.

  又∵兩條直線不重合,

  ∴L1∥L2.

  結(jié)論:兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即

  注意:上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的`,缺少這個(gè)前提,結(jié)論并不成立.即如果k1=k2,那么一定有L1∥L2;反之則不一定.

  下面我們研究?jī)蓷l直線垂直的情形.

  如果L1⊥L2,這時(shí)α1≠α2,否則兩直線平行.

  設(shè)α2<α1(圖1-30),甲圖的特征是L1與L2的交點(diǎn)在x軸上方;乙圖的特征是L1與L2的交點(diǎn)在x軸下方;丙圖的特征是L1與L2的交點(diǎn)在x軸上,無論哪種情況下都有

  α1=90°+α2.

  因?yàn)長(zhǎng)1、L2的斜率分別是k1、k2,即α1≠90°,所以α2≠0°.

  ,

  可以推出:α1=90°+α2. L1⊥L2.

  結(jié)論:兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負(fù)倒數(shù);反之,如果它們的斜率互為負(fù)倒數(shù),那么它們互相垂直,即

  注意:結(jié)論成立的條件.即如果k1·k2=-1,那么一定有L1⊥L2;反之則不一定.

  例題分析:

  例1已知A(2,3),B(-4,0),P(-3,1),Q(-1,2),試判斷直線BA與PQ的位置關(guān)系,并證明你的結(jié)論.

  解:直線BA的斜率k1=(3-0)/(2-(-4))=0.5,

  直線PQ的斜率k2=(2-1)/(-1-(-3))=0.5,

  因?yàn)閗1=k2=0.5,所以直線BA∥PQ.

  例2.已知四邊形ABCD的四個(gè)頂點(diǎn)分別為A(0,0),B(2,-1),C(4,2),D(2,3),試判斷四邊形ABCD的形狀,并給出證明.

  例3.已知A(-6,0),B(3,6),P(0,3),Q(-2,6),試判斷直線AB與PQ的位置關(guān)系.

  解:直線AB的斜率k1=(6-0)/(3-(-6))=2/3,

  直線PQ的斜率k2=(6-3)(-2-0)=-3/2,

  因?yàn)閗1·k2=-1所以AB⊥PQ.

  例4.已知A(5,-1),B(1,1),C(2,3),試判斷三角形ABC的形狀.

  分析:借助計(jì)算機(jī)作圖,通過觀察猜想:三角形ABC是直角三角形,其中AB⊥BC,再通過計(jì)算加以驗(yàn)證.(圖略)

  課堂練習(xí)

  P89練習(xí)1.2.

  歸納小結(jié):

  (1)兩條直線平行或垂直的真實(shí)等價(jià)條件;

  (2)應(yīng)用條件,判定兩條直線平行或垂直.

  (3)應(yīng)用直線平行的條件,判定三點(diǎn)共線.

  作業(yè)布置:P89-90習(xí)題3.1:A組5.8;

  課后記:

高一數(shù)學(xué)下冊(cè)教案7

  各位評(píng)委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級(jí)中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。

  下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)、效果評(píng)價(jià)六方面進(jìn)行說課。

  一、教材分析

  (一)教材的地位和作用

  “一元二次不等式解法”既是初中一元一次不等式解法在知識(shí)上的延伸和發(fā)展,又是本章集合知識(shí)的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識(shí)的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識(shí)。

  (二)教學(xué)內(nèi)容

  本節(jié)內(nèi)容分2課時(shí)學(xué)習(xí)。本課時(shí)通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個(gè)一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個(gè)二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。

  二、教學(xué)目標(biāo)分析

  根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

  知識(shí)目標(biāo)——理解“三個(gè)二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

  能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

  情感目標(biāo)——?jiǎng)?chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識(shí)及主體作用。

  三、重難點(diǎn)分析

  一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。

  要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識(shí)方程的`解,不等式的解集與函數(shù)圖象上對(duì)應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個(gè)二次”的關(guān)系。要突破這個(gè)難點(diǎn),讓學(xué)生歸納“三個(gè)一次”的關(guān)系作鋪墊。

  四、教法與學(xué)法分析

  (一)學(xué)法指導(dǎo)

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會(huì)學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會(huì)學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動(dòng)手畫、動(dòng)眼看、動(dòng)腦想、動(dòng)口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會(huì),教給了學(xué)生獲取知識(shí)的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會(huì)逐步感受到數(shù)學(xué)的美,會(huì)產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

  (二)教法分析

  本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。

  建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動(dòng)的建構(gòu)活動(dòng),學(xué)生應(yīng)與一定的知識(shí)背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識(shí)與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識(shí),這樣獲取的知識(shí),不但便于保持,而且易于遷移到陌生的問題情景中。

  本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的解法。

高一數(shù)學(xué)下冊(cè)教案8

  學(xué)習(xí)重點(diǎn):了解弧度制,并能進(jìn)行弧度與角度的換算

  學(xué)習(xí)難點(diǎn):弧度的概念及其與角度的關(guān)系。

  學(xué)習(xí)目標(biāo)

 ?、倭私饣《戎?,能進(jìn)行弧度與角度的換算。

  ②認(rèn)識(shí)弧長(zhǎng)公式,能進(jìn)行簡(jiǎn)單應(yīng)用。對(duì)弧長(zhǎng)公式只要求了解,會(huì)進(jìn)行簡(jiǎn)單應(yīng)用,不必在應(yīng)用方面加深。

 ?、哿私饨堑募吓c實(shí)數(shù)集建立了一一對(duì)應(yīng)關(guān)系,培養(yǎng)學(xué)生學(xué)會(huì)用函數(shù)的觀點(diǎn)分析、解決問題。

  教學(xué)過程

  一、自主學(xué)習(xí)

  1、長(zhǎng)度等于半徑長(zhǎng)的圓弧所對(duì)的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫)。這種度量角的單位制稱為。

  2、正角的弧度數(shù)是數(shù),負(fù)角的弧度數(shù)是數(shù),零角的弧度數(shù)是。

  3、角的弧度數(shù)的絕對(duì)值。(為弧長(zhǎng),為半徑)

  4:完成特殊角的度數(shù)與弧度數(shù)的對(duì)應(yīng)表。

  角度030456090120

  弧度

  角度135150180210225240

  弧度

  角度270300315330360

  弧度

  5、扇形面積公式:。

  二、師生互動(dòng)

  例1把化成弧度。

  變式:把化成度。

  小結(jié):在具體運(yùn)算時(shí),弧度二字和單位符號(hào)rad可省略,如:3表示3rad,sin表示rad角的正弦。

  例2用弧度制表示:

 ?。?)終邊在軸上的角的集合;

  (2)終邊在軸上的`角的集合。

  變式:終邊在坐標(biāo)軸上的角的集合。

  例3、知扇形的周長(zhǎng)為8,圓心角為2rad,,求該扇形的面積。

  三、鞏固練習(xí)

  1、若=—3,則角的終邊在()。

  A、第一象限B、第二象限

  C、第三象限D(zhuǎn)、第四象限

  2、半徑為2的圓的圓心角所對(duì)弧長(zhǎng)為6,則其圓心角為。

  四、課后反思

  五、課后鞏固練習(xí)

  1、用弧度制表示終邊在下列位置的角的集合:

 ?。?)直線y=x;(2)第二象限。

  2、圓弧長(zhǎng)度等于截其圓的內(nèi)接正三角形邊長(zhǎng),求其圓心角的弧度數(shù),并化為度表示。

高一數(shù)學(xué)下冊(cè)教案9

  課題:2.3.2.3直線的一般式方程

  課型:新授課

  教學(xué)目標(biāo):

  1、知識(shí)與技能

 ?。?)明確直線方程一般式的形式特征;

  (2)會(huì)把直線方程的一般式化為斜截式,進(jìn)而求斜率和截距;

 ?。?)會(huì)把直線方程的點(diǎn)斜式、兩點(diǎn)式化為一般式。

  2、過程與方法:學(xué)會(huì)用分類討論的思想方法解決問題。

  3、情態(tài)與價(jià)值觀

 ?。?)認(rèn)識(shí)事物之間的普遍聯(lián)系與相互轉(zhuǎn)化;(2)用聯(lián)系的觀點(diǎn)看問題。

  教學(xué)重點(diǎn):直線方程的一般式。

  教學(xué)難點(diǎn):對(duì)直線方程一般式的理解與應(yīng)用

  教學(xué)過程:

  問題

  設(shè)計(jì)意圖

  師生活動(dòng)

  1、(1)平面直角坐標(biāo)系中的每一條直線都可以用一個(gè)關(guān)于的二元一次方程表示嗎?

 ?。?)每一個(gè)關(guān)于的二元一次方程(A,B不同時(shí)為0)都表示一條直線嗎?

  使學(xué)生理解直線和二元一次方程的關(guān)系。

  教師引導(dǎo)學(xué)生用分類討論的方法思考探究問題(1),即直線存在斜率和直線不存在斜率時(shí)求出的直線方程是否都為二元一次方程。對(duì)于問題(2),教師引導(dǎo)學(xué)生理解要判斷某一個(gè)方程是否表示一條直線,只需看這個(gè)方程是否可以轉(zhuǎn)化為直線方程的某種形式。為此要對(duì)B分類討論,即當(dāng)時(shí)和當(dāng)B=0時(shí)兩種情形進(jìn)行變形。然后由學(xué)生去變形判斷,得出結(jié)論:

  關(guān)于的'二元一次方程,它都表示一條直線。

  教師概括指出:由于任何一條直線都可以用一個(gè)關(guān)于的二元一次方程表示;同時(shí),任何一個(gè)關(guān)于的二元一次方程都表示一條直線。

  我們把關(guān)于關(guān)于的二元一次方程(A,B不同時(shí)為0)叫做直線的一般式方程,簡(jiǎn)稱一般式(generalform).

  2、直線方程的一般式與其他幾種形式的直線方程相比,它有什么優(yōu)點(diǎn)?

  使學(xué)生理解直線方程的一般式的與其他形

  學(xué)生通過對(duì)比、討論,發(fā)現(xiàn)直線方程的一般式與其他形式的直線方程的一個(gè)不同點(diǎn)是:

  問題

  設(shè)計(jì)意圖

  師生活動(dòng)

  式的不同點(diǎn)。

  直線的一般式方程能夠表示平面上的所有直線,而點(diǎn)斜式、斜截式、兩點(diǎn)式方程,都不能表示與軸垂直的直線。

  3、在方程中,A,B,C為何值時(shí),方程表示的直線

 ?。?)平行于軸;(2)平行于軸;(3)與軸重合;(4)與重合。

  使學(xué)生理解二元一次方程的系數(shù)和常數(shù)項(xiàng)對(duì)直線的位置的影響。

  教師引導(dǎo)學(xué)生回顧前面所學(xué)過的與軸平行和重合、與軸平行和重合的直線方程的形式。然后由學(xué)生自主探索得到問題的答案。

  4、例5的教學(xué)

  已知直線經(jīng)過點(diǎn)A(6,-4),斜率為,求直線的點(diǎn)斜式和一般式方程。

  使學(xué)生體會(huì)把直線方程的點(diǎn)斜式轉(zhuǎn)化為一般式,把握直線方程一般式的特點(diǎn)。

  學(xué)生獨(dú)立完成。然后教師檢查、評(píng)價(jià)、反饋。指出:對(duì)于直線方程的一般式,一般作如下約定:一般按含項(xiàng)、含項(xiàng)、常數(shù)項(xiàng)順序排列;項(xiàng)的系數(shù)為正;,的系數(shù)和常數(shù)項(xiàng)一般不出現(xiàn)分?jǐn)?shù);無特加要時(shí),求直線方程的結(jié)果寫成一般式。

  5、例6的教學(xué)

  把直線的一般式方程化成斜截式,求出直線的斜率以及它在軸與軸上的截距,并畫出圖形。

  使學(xué)生體會(huì)直線方程的一般式化為斜截式,和已知直線方程的一般式求直線的斜率和截距的方法。

  先由學(xué)生思考解答,并讓一個(gè)學(xué)生上黑板板書。然后教師引導(dǎo)學(xué)生歸納出由直線方程的一般式,求直線的斜率和截距的方法:把一般式轉(zhuǎn)化為斜截式可求出直線的斜率的和直線在軸上的截距。求直線與軸的截距,即求直線與軸交點(diǎn)的橫坐標(biāo),為此可在方程中令=0,解出值,即為與直線與軸的截距。

  在直角坐標(biāo)系中畫直線時(shí),通常找出直線下兩個(gè)坐標(biāo)軸的交點(diǎn)。

  6、二元一次方程的每一個(gè)解與坐標(biāo)平面中點(diǎn)的有什么關(guān)系?直線與二元一次方程的解之間有什么關(guān)系?

  使學(xué)生進(jìn)一步理解二元一次方程與直線的關(guān)系,體會(huì)直解坐標(biāo)系把直線與方程聯(lián)系起來。

  學(xué)生閱讀教材第105頁,從中獲得對(duì)問題的理解。

  7、課堂練習(xí)

  鞏固所學(xué)知識(shí)和方法。

  學(xué)生獨(dú)立完成,教師檢查、評(píng)價(jià)。

  問題

  設(shè)計(jì)意圖

  師生活動(dòng)

  8、小結(jié)

  使學(xué)生對(duì)直線方程的理解有一個(gè)整體的認(rèn)識(shí)。

 ?。?)請(qǐng)學(xué)生寫出直線方程常見的幾種形式,并說明它們之間的關(guān)系。

 ?。?)比較各種直線方程的形式特點(diǎn)和適用范圍。

 ?。?)求直線方程應(yīng)具有多少個(gè)條件?

  (4)學(xué)習(xí)本節(jié)用到了哪些數(shù)學(xué)思想方法?

  鞏固課堂上所學(xué)的知識(shí)和方法。

  學(xué)生課后獨(dú)立思考完成。

  歸納小結(jié):

  (1)請(qǐng)學(xué)生寫出直線方程常見的幾種形式,并說明它們之間的關(guān)系。

 ?。?)比較各種直線方程的形式特點(diǎn)和適用范圍。

 ?。?)求直線方程應(yīng)具有多少個(gè)條件?

 ?。?)學(xué)習(xí)本節(jié)用到了哪些數(shù)學(xué)思想方法?

  作業(yè)布置:第101頁習(xí)題3.2第10,11題

  課后記:

高一數(shù)學(xué)下冊(cè)教案10

  課 型:新授課

  教學(xué)目標(biāo):

 ?。?)理解直線與圓的位置關(guān)系的幾何性質(zhì);

 ?。?)利用平面直角坐標(biāo)系解決直線與圓的位置關(guān)系;

 ?。?)會(huì)用“數(shù)形結(jié)合”的數(shù)學(xué)思想解決問題.

  教學(xué)重點(diǎn)、難點(diǎn):

  直線與圓的方程的應(yīng)用.

  教學(xué)過程:

  一、復(fù)習(xí)引入:

  問題1:如何判斷直線與圓的位置關(guān)系?

  問題2:如何判斷圓與圓的位置關(guān)系?

  直線與圓的'方程在生產(chǎn)、生活實(shí)踐以及數(shù)學(xué)中有著廣泛的應(yīng)用,這幾節(jié)課我們將通過一些例子學(xué)習(xí)直線與圓的方程在實(shí)際生活以及平面幾何等方面的應(yīng)用

  二、新課教學(xué):

  例1.(課本例4)圖4。2-5是某圓拱形橋的示意圖。這個(gè)圓的圓拱跨度AB=20m,拱高OP=4m,建造時(shí)每間隔4m需要用一根支柱支撐,求支柱的高度(精確到0.01m).

  小結(jié)方法:用坐標(biāo)法解決實(shí)際應(yīng)用題的步驟:

  第一步:將實(shí)際應(yīng)用題轉(zhuǎn)化為數(shù)學(xué)問題,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;

  第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;

  第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成實(shí)際結(jié)論,.

  例2.(課本例5)已知內(nèi)接于圓的四邊形的對(duì)角線互相垂直,求證圓心到一邊的距離等于這條邊所對(duì)邊長(zhǎng)的一半.

  小結(jié)方法:用坐標(biāo)法解決幾何問題的步驟:

  第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問題中的幾何元素,將平面幾何問題轉(zhuǎn)化為代數(shù)問題;

  第二步:通過代數(shù)運(yùn)算,解決代數(shù)問題;

  第三步:將代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論.

  課堂練習(xí):課本練習(xí)第2,3,4題;

  課后作業(yè):課本習(xí)題4.2A組第8,11題.B組第1題

高一數(shù)學(xué)下冊(cè)教案11

  教學(xué)要求:理解任意大小的角正角、負(fù)角和零角,掌握終邊相同的角、象限角、區(qū)間角、終邊在坐標(biāo)軸上的角。

  教學(xué)重點(diǎn):理解概念,掌握終邊相同角的表示法。

  教學(xué)難點(diǎn):理解角的任意大小。

  教學(xué)過程:

  一、復(fù)習(xí)準(zhǔn)備:

  1.提問:初中所學(xué)的角是如何定義?角的范圍?

 ?。ń强梢钥闯善矫鎯?nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所成的圖形;0~360)

  2.討論:實(shí)際生活中是否有些角度超出初中所學(xué)的范圍? 說明研究推廣角概念的必要性

 ?。ㄧ姳恚惑w操,如轉(zhuǎn)體720自行車車輪;螺絲扳手)

  二、講授新課:

  1.教學(xué)角的概念:

 ?、?定義正角、負(fù)角、零角:按逆時(shí)針方向旋轉(zhuǎn)所形成的角叫正角,按順時(shí)針方向旋轉(zhuǎn)所形成的角叫負(fù)角,未作任何旋轉(zhuǎn)所形成的角叫零角。

 ?、?討論:推廣后角的大小情況怎樣? (包括任意大小的正角、負(fù)角和零角)

 ?、?示意幾個(gè)旋轉(zhuǎn)例子,寫出角的度數(shù)。

 ?、?如何將角放入坐標(biāo)系中?定義第幾象限的角。

 ?。ǜ拍睿航堑捻旤c(diǎn)與原點(diǎn)重合,角的始邊與 軸的非負(fù)半軸重合。 那么,角的終邊(除端點(diǎn)外)在第幾象限,我們就說這個(gè)角是第幾象限角。 )

 ?、?練習(xí):試在坐標(biāo)系中表示300、390、—330角,并判別在第幾象限?

 ?、?討論:角的終邊在坐標(biāo)軸上,屬于哪一個(gè)象限?

  結(jié)論:如果角的終邊在坐標(biāo)軸上,就認(rèn)為這個(gè)角不屬于任何一個(gè)象限,稱為非象限角。

  答:銳角是第幾象限角?第一象限角一定是銳角嗎?再分別就直角、鈍角來回答這兩個(gè)問題。

 ?、?討論:與60終邊相同的角有哪些?都可以用什么代數(shù)式表示?

  與終邊相同的角如何表示?

 ?、?結(jié)論:與角終邊相同的角,都可用式子k360+表示,kZ,寫成集合呢?

 ?、?討論:給定頂點(diǎn)、終邊、始邊的角有多少個(gè)?

  注意:終邊相同的角不一定相等;但相等的角,終邊一定相同;終邊相同的角有無數(shù)多個(gè),它們相差360的整數(shù)倍

  2.教學(xué)例題:

 ?、?出示例1:在0~360間,找出下列終邊相同角:—150、1040、—940。

  (討論計(jì)算方法:除以360求正余數(shù) 試練訂正)

  ② 出示例2:寫出與下列終邊相同的角的集合,并寫出—720~360間角。

 ?。ㄓ懻撚?jì)算方法:直接寫,分析k的取值 試練訂正)

 ?、?討論:上面如何求k的值? (解不等式法)

 ?、?練習(xí):寫出終邊在x軸上的角的集合,y軸上呢?坐標(biāo)軸上呢?第一象限呢?

 ?、?出示例3:寫出終邊直線在y=x上的角的集合S, 并把S中適合不等式

  的元素 寫出來。 (師生共練小結(jié))

  3.小結(jié):角的推廣;象限角的定義;終邊相同角的表示;終邊落在坐標(biāo)軸時(shí)等;區(qū)間角表示。

  三、鞏固練習(xí):

  1. 寫出終邊在第一象限的角的集合

  2.作業(yè):書P6 練習(xí)

  第二課時(shí)

  弧度制(一)

  教學(xué)要求:掌握弧度制的定義,學(xué)會(huì)弧度制與角度制互化,并進(jìn)而建立角的集合與實(shí)數(shù)集R一一對(duì)應(yīng)關(guān)系的概念。

  教學(xué)重點(diǎn):掌握換算。

  教學(xué)難點(diǎn):理解弧度意義。

  教學(xué)過程:

  一、復(fù)習(xí)準(zhǔn)備:

  1. 寫出終邊在x軸上角的集合。

  2.寫出終邊在y軸上角的集合。

  3.寫出終邊在第三象限角的集合。

  4.寫出終邊在第一、三象限角的集合。

  5.什么叫1的角?計(jì)算扇形弧長(zhǎng)的`公式是怎樣的。

  二、講授新課:

  1.教學(xué)弧度的意義:

 ?、?如圖:AOB所對(duì)弧長(zhǎng)分別為L(zhǎng)、L,半徑分別為r、r,求證。

 ?、?討論: 是否為定值?其值與什么有關(guān)系?

 ?、?討論: 在什么情況下為值為1? 是否可以作為角的度量?

 ?、?定義:長(zhǎng)度等于半徑長(zhǎng)的弧所對(duì)的圓心角叫1弧度的角。 用rad表示,讀作弧度。

 ?、?計(jì)算弧度:180、360 思考:—360等于多少弧度?

  ⑥ 探究:完成書P7 表1。1—1后,討論:半徑為r的圓心角所對(duì)弧長(zhǎng)為l,則弧度數(shù)=?

  ⑦ 規(guī)定:正角的弧度數(shù)是一個(gè)正數(shù),負(fù)角的弧度數(shù)是一個(gè)負(fù)數(shù),零角的弧度數(shù)是0。 半徑為r的圓心角所對(duì)弧長(zhǎng)為l,則弧度數(shù)的絕對(duì)值為1 。 用弧度作單位來度量角的制度叫弧度制。

  ⑧ 討論:由弧度數(shù)的定義可以得到計(jì)算弧長(zhǎng)的公式怎樣?

 ?、?討論:1度等于多少弧度?1弧度等于多少度?度表示與弧度表示有啥不同?

  —720的圓心角、弧長(zhǎng)、弧度如何看?

  2 .教學(xué)例題:

 ?、俪鍪纠?:角度與弧度互化:

  分析:如何依據(jù)換算公式?(抓?。?80=p rad) 如何設(shè)計(jì)算法?

  計(jì)算器操作: 模式選擇 MODE MODE 1(2);輸入數(shù)據(jù);功能鍵SHIFT DRG 1(2)

 ?、?練習(xí):角度與弧度互化:03045120135150

 ?、?討論:引入弧度制的意義?(在角的集合與實(shí)數(shù)的集合之間建立一種一一對(duì)應(yīng)的關(guān)系)

 ?、?練習(xí):用弧度制表示下列角的集合:終邊在x軸上;終邊在y軸上。

  小結(jié):弧度數(shù)定義;換算公式(180=p rad);弧度制與角度制互化。

  三、鞏固練習(xí):

  1.教材P10 練習(xí)1、2題。

  2.用弧度制表示下列角的集合:終邊在直線y=x; 終邊在第二象限; 終邊在第一象限。

  3. 作業(yè):教材P11 5、7、8題。

  第三課時(shí):

  弧度制(二)

  教學(xué)要求:更進(jìn)一步理解弧度的意義,能熟練地進(jìn)行弧度與角度的換算。 掌握弧長(zhǎng)公式,能用弧度表示終邊相同的角、象限角和終邊在坐標(biāo)軸上的角。 掌握并運(yùn)用弧度制表示的弧長(zhǎng)公式、扇形面積公式

  教學(xué)重點(diǎn):掌握扇形弧長(zhǎng)公式、面積公式。

  教學(xué)難點(diǎn):理解弧度制表示。

  教學(xué)過程:

  一、復(fù)習(xí)準(zhǔn)備:

  1. 提問:什么叫1弧度的角?1度等于多少弧度?1弧度等于多少度?扇形弧長(zhǎng)公式?

  2.弧度與角度互換

  3.口答下列特殊角的弧度數(shù):0、30、45、60、90、120、135

  二、講授新課:

  1.教學(xué)例題:

 ?、?出示例:用弧度制推導(dǎo):S = LR

  分析:先求1弧度扇形的面積( R )再求弧長(zhǎng)為L(zhǎng)、半徑為R的扇形面積?

  方法二:根據(jù)扇形弧長(zhǎng)公式、面積公式,結(jié)合換算公式轉(zhuǎn)換。

 ?、?練習(xí):扇形半徑為45,圓心角為120,用弧度制求弧長(zhǎng)、面積。

 ?、?出示例:計(jì)算sin、tan15、cos

  2.練習(xí):

 ?、?用弧度制寫出與下列終邊相同的角,并求0~2間的角。

  ② 用弧度制表示終邊在x軸上角的集合、終邊在y軸上角的集合?終邊在第三象限角的集合?

  ③ 討論:=k360+ 與=2k是否正確?

  ④ 與— 的終邊相同,且—22

 ?、?已知扇形AOB的周長(zhǎng)是6cm,該扇形的中心角是1弧度,求該扇形的面積。

  解法:設(shè)扇形的半徑為r,弧長(zhǎng)為l,列方程組而求。

  3. 小結(jié):扇形弧長(zhǎng)公式、面積公式;弧度制的運(yùn)用;計(jì)算器使用。

  三、鞏固練習(xí):

  1.時(shí)間經(jīng)過2小時(shí)30分,時(shí)針和分針各轉(zhuǎn)了多少弧度?

  2.一扇形的中心角是54,它的半徑為20cm,求扇形的周長(zhǎng)和面積。

  3.已知角和角的差為10,角和角的和是10弧度,則、的弧度數(shù)分別是多少。

  4.作業(yè):教材P10 練習(xí)4、5、6題。

高一數(shù)學(xué)下冊(cè)教案11篇 高一數(shù)學(xué)下冊(cè)課程相關(guān)文章:

人教版六年級(jí)下冊(cè)數(shù)學(xué)教案3篇(鼎尖教案六年級(jí)下冊(cè)數(shù)學(xué))

人教版六年級(jí)下冊(cè)數(shù)學(xué)教案范文4篇(六年級(jí)下冊(cè)自行車?yán)锏臄?shù)學(xué)教案)

小學(xué)數(shù)學(xué)教案10篇

初一數(shù)學(xué)教案4篇

人教版六年級(jí)下冊(cè)數(shù)學(xué)教案3篇 小學(xué)六年級(jí)數(shù)學(xué)下冊(cè)教案

小學(xué)二年級(jí)下冊(cè)美術(shù)教案11篇 小學(xué)二年級(jí)美術(shù)下冊(cè)免費(fèi)教案

關(guān)于八年級(jí)數(shù)學(xué)教案范文4篇(八年級(jí)數(shù)學(xué)優(yōu)秀教案)

小學(xué)數(shù)學(xué)教案精品5篇

幼兒園認(rèn)識(shí)量的數(shù)學(xué)教案12篇

五年級(jí)下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃(匯編8篇)


亚洲一区爱区精品无码_无码熟妇人妻AV_日本免费一区二区三区最新_国产AV寂寞骚妇

                        国产丝袜美腿一区二区三区| 成人免费视频网站在线观看| 91麻豆精品国产91久久久资源速度| 粉嫩aⅴ一区二区三区四区五区| 不卡一卡二卡三乱码免费网站| 免费一级欧美片在线观看| eeuss鲁片一区二区三区在线看| 欧美日韩视频专区在线播放| 国产真实乱对白精彩久久| 一区二区三区四区不卡视频| 久久综合色之久久综合| 日韩午夜激情av| 欧美国产日韩a欧美在线观看| 久久九九久精品国产免费直播| 日韩免费视频一区二区| 国产精品麻豆久久久| 日韩欧美久久一区| 亚洲精品视频免费看| 国产一区二区在线电影| 欧美一区二区三区电影| 久久综合色之久久综合| 亚洲国产成人av好男人在线观看| 国产在线视频一区二区三区| 亚洲一区电影777| 久久久亚洲高清| 亚洲超碰精品一区二区| 精品少妇一区二区三区视频免付费| 亚洲精品中文在线影院| 99re成人精品视频| 久久免费电影网| 国产麻豆精品久久一二三| 色激情天天射综合网| 亚洲成av人片在线| 欧美欧美欧美欧美首页| 久久综合狠狠综合久久综合88| 久久er99热精品一区二区| 国产亚洲一区二区三区| 国产精品久久久久四虎| 91在线免费播放| 亚洲人成亚洲人成在线观看图片| 欧美精品一区二区不卡| 99国产精品99久久久久久| 一区二区三区免费在线观看| 亚洲精品网站在线观看| 欧美tickling挠脚心丨vk| 日韩国产欧美在线观看| 精品国产麻豆免费人成网站| 成人久久久精品乱码一区二区三区| 亚洲欧洲日韩av| 成人免费一区二区三区视频| 亚洲狼人国产精品| 日韩一卡二卡三卡| 成人激情视频网站| 欧美日韩你懂的| 国产精品系列在线观看| 国模少妇一区二区三区| 午夜成人免费电影| 一区二区三区欧美日韩| 91看片淫黄大片一级在线观看| 国产日产欧美一区二区三区| 成人免费高清视频在线观看| 91丝袜美腿高跟国产极品老师| 久久综合色播五月| 麻豆精品一区二区综合av| 国产一区二三区好的| 欧美在线视频不卡| 亚洲成a天堂v人片| 91美女片黄在线| 在线观看91精品国产麻豆| 成人综合在线视频| 日韩精品五月天| 国产日韩欧美高清在线| 中文字幕一区二区三区在线播放| 久久国产综合精品| 国内精品伊人久久久久av一坑| 国产又黄又大久久| 国产91丝袜在线播放| 欧美精品vⅰdeose4hd| 4438x亚洲最大成人网| 蜜臀av性久久久久蜜臀aⅴ四虎| 日本不卡高清视频| 成人国产在线观看| 亚洲国产一区二区三区| 99免费精品在线| 免费精品99久久国产综合精品| 欧美视频三区在线播放| 日韩欧美国产一区二区三区| 亚洲高清免费观看高清完整版在线观看| 精品视频在线免费| 三级影片在线观看欧美日韩一区二区| 久久久噜噜噜久久中文字幕色伊伊| 国产日韩精品一区| 日韩免费高清视频| 亚洲伊人伊色伊影伊综合网| 成人一区在线观看| 久久综合九色综合欧美亚洲| 欧美日韩国产a| 最新日韩在线视频| 99在线热播精品免费| 亚洲欧美另类久久久精品2019| 天堂午夜影视日韩欧美一区二区| 亚洲亚洲人成综合网络| 最近中文字幕一区二区三区| 日韩一卡二卡三卡四卡| 国产日韩v精品一区二区| 日韩国产欧美在线观看| 91网上在线视频| 欧美视频一区二区在线观看| 亚洲精品成人在线| av福利精品导航| 亚洲成人自拍一区| 午夜精品在线视频一区| 国产亚洲欧美激情| 亚洲二区在线视频| 欧美精品在线视频| 欧美老肥妇做.爰bbww| 日韩欧美国产综合| 成人高清视频在线| 免费成人在线观看| 亚洲综合精品久久| 国产sm精品调教视频网站| 国产寡妇亲子伦一区二区| 欧美网站一区二区| 亚洲精品中文在线观看| 国产视频一区二区三区在线观看| 欧美久久免费观看| 亚洲欧洲日韩女同| 精品国产凹凸成av人网站| 丁香六月综合激情| 日本视频一区二区| 婷婷丁香激情综合| 日韩专区中文字幕一区二区| 欧美色老头old∨ideo| 欧美精品一区二区高清在线观看| 久久免费偷拍视频| 成人在线视频首页| 亚洲国产aⅴ成人精品无吗| 亚洲第四色夜色| 亚洲chinese男男1069| 久久综合综合久久综合| 亚洲一区中文日韩| 免费成人在线观看| 亚洲大片免费看| 免费看日韩精品| 欧美精品一区二区三区蜜桃视频| 日韩视频在线观看一区二区| 久久综合久久综合久久综合| 开心九九激情九九欧美日韩精美视频电影| 精品一区二区三区在线播放| 欧美欧美欧美欧美首页| 欧美精品自拍偷拍| 亚洲高清视频在线| 婷婷中文字幕综合| 欧美四级电影在线观看| 欧美日韩精品福利| 99免费精品在线| 在线观看一区二区精品视频| 欧美videos大乳护士334| 色欧美片视频在线观看在线视频| 不卡免费追剧大全电视剧网站| 欧美一区二区三区在线看| 成人看片黄a免费看在线| 麻豆成人av在线| 国产成人在线视频网站| 国产精品影视网| 蜜桃av噜噜一区二区三区小说| 欧美日韩综合不卡| 国产精品99久久久久久似苏梦涵| 日韩一区二区三区在线观看| 中文乱码免费一区二区| 国产精品美女久久久久久久久久久| 天天色天天爱天天射综合| 国产三级三级三级精品8ⅰ区| 国产自产2019最新不卡| 色先锋资源久久综合| www.久久久久久久久| 精品国产免费一区二区三区香蕉| 欧美亚洲动漫制服丝袜| 91丝袜美腿高跟国产极品老师| 国精品**一区二区三区在线蜜桃| 亚洲综合网站在线观看| 一区二区三区精品久久久| 国产精品国产三级国产普通话三级| 狠狠狠色丁香婷婷综合激情| 国产午夜亚洲精品不卡| 美女被吸乳得到大胸91| 亚洲同性gay激情无套| 成人美女视频在线看| 日韩精品成人一区二区三区| 91蜜桃视频在线| 日本成人中文字幕| 中文成人综合网| 国产盗摄女厕一区二区三区| 日日夜夜精品视频天天综合网| 成人av网站在线| 色噜噜狠狠色综合欧洲selulu| 欧美精品第一页| 另类的小说在线视频另类成人小视频在线| 91精品免费在线观看| 国产精品538一区二区在线|