下面是范文網(wǎng)小編分享的職高高一數(shù)學教案模板5篇(中職高一數(shù)學教案),供大家參閱。

職高高一數(shù)學教案模板1
教學目的:
掌握圓的標準方程,并能解決與之有關的問題
教學重點:
圓的標準方程及有關運用
教學難點:
標準方程的靈活運用
教學過程:
一、導入新課,探究標準方程
二、掌握知識,鞏固練習
練習:⒈說出下列圓的方程
⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3
⒉指出下列圓的圓心和半徑
⑴(x-2)2+(y+3)2=3
⑵x2+y2=2
⑶x2+y2-6x+4y+12=0
⒊判斷3x-4y-10=0和x2+y2=4的位置關系
⒋圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學方法)
練習:1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)
四、小結練習P771,2,3,4
五、作業(yè)P811,2,3,4
職高高一數(shù)學教案模板2
課題
列方程解決實際問題(1)
日期
9月1日
教學內容
九年義務教育六年制小學數(shù)學第11冊第1頁的例1和“練一練”,練習一的第1~5題。
教學目標
1、使學生在解決實際問題的過程中,理解并掌握形如ax±b=c的方程的解法,會列上述方程解決兩步計算的實際問題。
2、使學生在觀察、分析、抽象、概括和交流的過程中,經(jīng)歷將現(xiàn)實問題抽象為方程的過程,進一步體會方程的思想方法及價值。
3、使學生在積極參與數(shù)學活動的過程中,養(yǎng)成獨立思考,主動與他人合作交流,自覺檢驗等習慣。
教學重點
讓學生經(jīng)歷尋找實際問題中數(shù)量之間的相等關系并列方程解決問題的過程,在過程中自主理解并掌握有關方程的解法,加深對列方程解決實際問題的體驗。
教學難點
正確尋找等量關系列方程解題。
教具準備
小黑板等
課時安排
1課時
教學步驟
一、情境引入
西安是我國有名的歷史文化名城,有很多著名的古代建筑,其中就包括聞名遐邇的大雁塔和小雁塔。(出示大雁塔和小雁塔的圖片)這節(jié)課,我們先來研究一個與這兩處建筑有關的數(shù)學問題。(出示例1的文字部分)
要求學生從題目中找出大雁塔和小雁塔高度之間的相等。
二、探究新知
1、找出等量關系
2、列方程解題
題目中的哪句話能清楚地表明大雁塔和小雁塔高度之間的關系?
提問:題目中告訴了我們哪些條件?要我們求什么問題?
提出要求:你能不能用一個數(shù)量關系式將大雁塔和小雁塔高度之間的相等關系表示出來?
引導學生觀察第一個等量關系式,提問:在這個等量關系式中,哪個數(shù)量是已知的?哪個數(shù)量是要我們去求的?
追問:我們可以用什么方法來解決這個問題?
板書課題:列方程解決實際問題
談話:我們在五年級已經(jīng)學過列方程解決簡單的實際問題。請同學們先回憶一下,列方程解決問題一般要經(jīng)過哪幾個步驟?
提問:還可以怎樣列方程?
學生列出方程后,要求他們在小組內交流各自列出的方程,并說說列方程的根據(jù),以及可以怎樣解列出的方程。
要求學生進行完整的表述。
交流中板書學生可能想到等量關系式:
①小雁塔的高度×2-22=大雁塔的高度;
②小雁塔的高度×2=大雁塔的高度+22;
③小雁塔的高度×2-大雁塔的高度=22。
讓學生先自主設未知數(shù),并根據(jù)第一個等量關系式列出方程。
學生完成后,組織交流解方程式完整過程,核對求出的解,并提示學生進行檢驗,最后讓學生寫出答句。
三、引導小結
剛才我們通過列方程解決了一個實際問題。你能說說列方程解決問題的大致步驟嗎?其中哪些環(huán)節(jié)很重要?
學生說出列方程解題的步驟。
四、布置作業(yè)
練習一1——5題
五、評價總結
誰愿意總結一下這節(jié)課我們共同學習了哪些知識?你們的收獲是什么?還有哪些疑問?
評價總結。
板書設計
列方程解決實際問題(1)
等量關系式:
①小雁塔的高度×2-22=大雁塔的高度;
②小雁塔的高度×2=大雁塔的高度+22;
③小雁塔的高度×2-大雁塔的高度=22。
職高高一數(shù)學教案模板3
一、教學目標
【知識與技能】
在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。
【過程與方法】
通過對方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。
【情感態(tài)度與價值觀】
滲透數(shù)形結合、化歸與轉化等數(shù)學思想方法,提高學生的整體素質,激勵學生創(chuàng)新,勇于探索。
二、教學重難點
【重點】
掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。
【難點】
二元二次方程與圓的一般方程及標準圓方程的關系。
三、教學過程
(一)復習舊知,引出課題
1、復習圓的標準方程,圓心、半徑。
2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?
職高高一數(shù)學教案模板4
一、教學目標
1.知識與技能
(1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。
(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
2.過程與方法
學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
3.情感態(tài)度與價值觀
(1)提高空間想象力與直觀感受。
(2)體會對比在學習中的作用。
(3)感受幾何作圖在生產(chǎn)活動中的應用。
二、教學重點、難點
重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
三、學法與教學用具
1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2.教學用具:三角板、圓規(guī)
四、教學思路
(一)創(chuàng)設情景,揭示課題
1.我們都學過畫畫,這節(jié)課我們畫一物體:圓柱
把實物圓柱放在講臺上讓學生畫。
2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節(jié)主要學習的內容。
(二)研探新知
1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發(fā)表自己的見解,教師及時給予點評。
畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調斜二測畫法的步驟。
練習反饋
根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖
教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。
教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。
3.探求空間幾何體的直觀圖的畫法
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。
教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。
4.平行投影與中心投影
投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5.鞏固練習,課本P16練習1(1),2,3,4
三、歸納整理
學生回顧斜二測畫法的關鍵與步驟
四、作業(yè)
1.書畫作業(yè),課本P17練習第5題
2.課外思考課本P16,探究(1)(2)
職高高一數(shù)學教案模板5
教學目標:
(1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.
(2)進一步理解曲線的方程和方程的曲線.
(3)初步掌握求曲線方程的方法.
(4)通過本節(jié)內容的教學,培養(yǎng)學生分析問題和轉化的能力.
教學重點、難點:求曲線的方程.
教學用具:
計算機.
教學方法:
啟發(fā)引導法,討論法.
教學過程:
【引入】
1.提問:什么是曲線的方程和方程的曲線.
學生思考并回答.教師強調.
2.坐標法和解析幾何的意義、基本問題.
對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質間接地來研究曲線的性質,這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:
(1)根據(jù)已知條件,求出表示平面曲線的方程.
(2)通過方程,研究平面曲線的性質.
事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.
【問題】
如何根據(jù)已知條件,求出曲線的方程.
【實例分析】
例1:設、兩點的坐標是、(3,7),求線段的垂直平分線的方程.
首先由學生分析:根據(jù)直線方程的知識,運用點斜式即可解決.
解法一:易求線段的中點坐標為(1,3),
由斜率關系可求得l的斜率為
于是有
即l的方程為
①
分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據(jù)是什么,有證明嗎?
(通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據(jù)就是定義中的兩條).
證明:(1)曲線上的點的坐標都是這個方程的解.
設是線段的垂直平分線上任意一點,則
即
將上式兩邊平方,整理得
這說明點的坐標是方程的解.
(2)以這個方程的解為坐標的點都是曲線上的點.
設點的坐標是方程①的任意一解,則
到、的距離分別為
所以,即點在直線上.
綜合(1)、(2),①是所求直線的方程.
至此,證明完畢.回顧上述內容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標都是這個方程的解中,設是線段的垂直平分線上任意一點,最后得到式子,如果去掉腳標,這不就是所求方程嗎?可見,這個證明過程就表明一種求解過程,下面試試看:
解法二:設是線段的垂直平分線上任意一點,也就是點屬于集合
由兩點間的距離公式,點所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.
這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應的思想.因此是個好方法.
讓我們用這個方法試解如下問題:
例2:點與兩條互相垂直的直線的距離的積是常數(shù)求點的軌跡方程.
分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.
求解過程略.
【概括總結】通過學生討論,師生共同總結:
分析上面兩個例題的求解過程,我們總結一下求解曲線方程的大體步驟:
首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:
(1)建立適當?shù)淖鴺讼?,用有序實?shù)對例如表示曲線上任意一點的坐標;
(2)寫出適合條件的'點的集合;
(3)用坐標表示條件,列出方程;
(4)化方程為最簡形式;
(5)證明以化簡后的方程的解為坐標的點都是曲線上的點.
一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.
上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.
下面再看一個問題:
例3:已知一條曲線在軸的上方,它上面的每一點到點的距離減去它到軸的距離的差都是2,求這條曲線的方程.
【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關系.
解:設點是曲線上任意一點,軸,垂足是(如圖2),那么點屬于集合
由距離公式,點適合的條件可表示為
①
將①式移項后再兩邊平方,得
化簡得
由題意,曲線在軸的上方,所以,雖然原點的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為,它是關于軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.
【練習鞏固】
題目:在正三角形內有一動點,已知到三個頂點的距離分別為、 、,且有,求點軌跡方程.
分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設、的坐標為、,則的坐標為,的坐標為.
根據(jù)條件,代入坐標可得
化簡得
①
由于題目中要求點在三角形內,所以,在結合①式可進一步求出、的范圍,最后曲線方程可表示為
【小結】師生共同總結:
(1)解析幾何研究研究問題的方法是什么?
(2)如何求曲線的方程?
(3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注意什么?
【作業(yè)】課本第72頁練習1,2,3;
職高高一數(shù)學教案模板5篇(中職高一數(shù)學教案)相關文章:
★ 一年級上冊數(shù)學準備教案范文3篇 準備課一年級上冊數(shù)學教案
★ 學校二年級數(shù)學下冊教案范文5篇(小學數(shù)學二年級數(shù)學下冊教案)
★ 高一英語優(yōu)秀教案3篇 高一英語優(yōu)秀教案范文
★ 高一數(shù)學備課組教學設計3篇 高一上學期數(shù)學備課教案
★ 一年級數(shù)學下冊第二單元例題6教案2022范文3篇 小學一年級數(shù)學下冊第二單元教案
★ 北師大一年級數(shù)學教案最新例文3篇(小學北師大版一年級數(shù)學教案)
★ 數(shù)學二年級下冊教學教案3篇(二年級下冊數(shù)學課教案)
★ 2022幼兒園大班數(shù)學教案范文格式3篇 幼兒園的數(shù)學教案范文大全
★ 初二數(shù)學教案模板5篇(數(shù)學初中教案模板)
★ 四年級數(shù)學不含括號的四則運算教案3篇 小學四年級四則運算題帶括號